嵌入式硬件杂谈(七)IGBT MOS管 三极管应用场景与区别

引言:在现代嵌入式硬件设计中,开关元件作为电路中的重要组成部分,起着至关重要的作用。三种主要的开关元件------IGBT (绝缘栅双极型晶体管)、MOSFET (金属氧化物半导体场效应晶体管)和三极管(BJT)各自具有不同的特点和适用场景。在嵌入式系统、电动汽车、工业自动化、逆变器、电源管理等领域,它们都扮演着不可或缺的角色。本篇文章将深入探讨这三种开关元件的应用场景、技术特点、面临的问题及它们之间的主要区别,帮助读者更好地理解这些元件的选择和应用。

目录

1.开关电路介绍

2.MOS管的问题

3.三极管的问题

4.IGBT的问题

[5. 三者的主要区别](#5. 三者的主要区别)

1.开关电路介绍

需要知道IGBT MOS管 三极管应用场景与区别,我们先了解下述的内容,首先就是开关电路,左图的开关是在一直开关不停切换的状态,那么电压的波形就是右边的一个PWM波形,比如电动汽车,他内部的模型就是一个电池加上一个电机,当然中间也需要一个电机调速器,因此这个电机调速器也是通过类似于开关来作用的。

因此你想开的快些,开关闭合时间就长些,否则闭合时间就短些。

其实变频空调的原理也是一样的,通过变频器,也就是开关电路的原理了。

2.MOS管的问题

你给他的gate施加高电平的时候,mos管的DS之间就等效为一个闭合的开关,那么反之给gate施加一个低电平的时候,mos管的DS之间就等效为一个断开的开关的状态。因为在高压的情况下,mos管的耐受能力不行,400V就到头了,很容易烧坏。

MOSFET是一种场效应晶体管,具有高输入阻抗和非常快的开关速度,广泛用于低功率、开关频率较高的应用。

应用场景:

低功率开关电源(SMPS):MOSFET广泛用于开关电源中,特别是在较低电压下,如5V至100V的应用。

电动汽车充电器:在电动汽车充电器中,MOSFET用于高频开关,提供高效率的电压转换。

DC-DC转换器:MOSFET在DC-DC转换器中用作开关元件,能够实现高效的能量转换。

音频放大器:在音频放大器中,MOSFET用于高频率开关,能够提高音频信号的功率输出。

优点:

高速开关,适合高频应用。

开关损耗低,效率高。

结构简单,易于控制。

缺点:

电压承受能力相对较低,一般在200V以下,部分高压MOSFET可承受更高电压。

在大电流应用中可能出现较大的导通电阻,导致较高的导通损耗。

3.三极管的问题

如果考虑到三极管你还需要注意的是如何产生一个驱动的电流呢?用单片机肯定是不行的,他的IO口输出不了太高的电流,最多20mA,那是不是可以用mos管相加呢?

但是这样的电路是有问题的,需要额外的电源还有电阻,因此改成如下的状态会更好。

但是其实这样的电路结构就是IGBT了。

三极管是一种较早的半导体器件,它的工作原理基于电流控制,适用于高功率放大应用,但在开关性能上不如MOSFET和IGBT。

应用场景:

音频放大器:三极管常用于音频放大器中,能够提供高增益和线性放大。

模拟电路:在一些低频模拟电路中,三极管依然作为主要的增益元件使用。

低功率开关电路:虽然三极管的开关速度较慢,但在某些低功率、低频应用中仍然被使用。

优点:

高增益和较低的饱和压降。

在低频电路中具有良好的放大特性。

缺点:

开关速度较慢,不适合高频应用。

输入阻抗低,控制复杂。

热稳定性差,易产生热失控。

4.IGBT的问题

IGBT(Insulated Gate Bipolar Transistor)介绍

IGBT (绝缘栅双极型晶体管)是一种混合型半导体开关器件,结合了MOSFET (金属氧化物半导体场效应晶体管)和BJT(双极性结型晶体管)两者的优点。它将MOSFET的高输入阻抗和BJT的高电流承载能力结合起来,广泛应用于高功率和中高电压的电子控制系统中。

IGBT的基本结构与工作原理

IGBT的结构类似于一个MOSFETBJT的组合,通常包括四层半导体材料(P-N-P-N结构),包括一个栅极、源极和漏极。它的工作原理基于以下几个步骤:

  1. 栅极控制:输入电压通过栅极控制IGBT的开关状态。当栅极电压达到一定阈值时,IGBT被开启(导通状态),反之,关闭(断开状态)。

  2. 载流子注入:当栅极电压足够高时,电子(或孔)通过源极注入到基极区,进而通过PNPN结构的作用进行载流子注入,产生集电极电流。类似于BJT的工作机制,IGBT在导通时可以通过基极区进行大电流流动。

  3. 关断机制:当栅极电压降低到阈值以下时,IGBT关断,电流无法流过集电极与发射极之间,形成断开状态。

与BJT不同,IGBT的栅极由MOS结构控制,因此其输入特性类似MOSFET,具有很高的输入阻抗,不需要持续的控制电流。这使得它比BJT更容易驱动。

GBT结合了MOSFET的输入特性和BJT的输出特性,因此它在高电压和大电流应用中表现出色。

应用场景:

电动汽车:在电动汽车的电机驱动系统中,IGBT被广泛应用于电机调速器(例如逆变器)中。电动汽车的电机调速器通过开关频率调节电机的工作电流,实现精确控制。

变频器(VFD):IGBT是工业用变频器中的核心开关元件,控制电机的速度和转矩,常用于空调、泵和风机等设备的驱动系统。

电力逆变器:IGBT在光伏逆变器和风力发电系统中广泛使用,用于将直流电转换为交流电。

电力电子转换器:在高功率电源和电力传输系统(如高压直流输电)中,IGBT用于开关控制,能够承受较高的电压和电流,适应高功率需求。

优点:

能够承受较高的电压(通常为600V至4500V)。

在较高电流下依然能保持较低的导通损耗。

开关速度适中,适合高功率控制。

缺点:

开关速度相对较慢,不适合高频应用。

导通损耗相对较大。

5. 三者的主要区别

特性 IGBT MOSFET 三极管
控制方式 电压控制(类似MOSFET) 电压控制 电流控制
承受电压 高(600V~4500V) 中等(30V~1500V) 低(一般<100V)
承受电流 高(几十安培到几百安培) 低至中等 中等
开关速度 中等 高(适用于高频)
导通损耗 较大 较小 较小
效率 较高(高功率应用) 高(高频应用) 一般
适用场景 高功率、高电流的电力电子应用(电动汽车、电力逆变器等) 高频开关应用(电源、电动工具、电动汽车充电器等) 音频放大器、低频放大应用

IGBT 主要用于高功率、高电流的应用场合,适合电动汽车电机控制、逆变器等高功率控制系统。

MOSFET 适用于高频、高效率的开关电路,如开关电源、DC-DC转换器、电动汽车充电器等。

三极管 在低频模拟电路、音频放大器等领域仍有广泛应用,但在高频或高功率开关应用中逐渐被替代。

相关推荐
charlie1145141919 分钟前
从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(动态菜单组件实现)
c语言·驱动开发·stm32·单片机·算法·教程·oled
HMS工业网络4 小时前
Anybus网关EtherNet/IP扫描器:快速、可靠、易配置的新一代网关
网络·物联网·安全
电子科技圈4 小时前
智能化加速标准和协议的更新并推动验证IP(VIP)在芯片设计中的更广泛应用
经验分享·科技·嵌入式硬件·设计模式
深圳启明云端科技4 小时前
ESP32无线通信智能屏方案,设备触摸人机交互,高性能控制应用
网络·物联网·人机交互·智能家居·乐鑫
Anna_Tong14 小时前
HSM能为区块链、IoT等新兴技术提供怎样的保护?
物联网·区块链·iot·数据加密·hsm
马浩同学17 小时前
【ESP32】ESP-IDF开发 | WiFi开发 | UDP用户数据报协议 + UDP客户端和服务器例程
c语言·单片机·mcu·网络协议·udp
promising-w17 小时前
单片机基础模块学习——超声波传感器
嵌入式硬件
水饺编程17 小时前
简易CPU设计入门:控制总线的剩余信号(四)
linux·嵌入式硬件·fpga开发·硬件工程
David WangYang18 小时前
Ansys Maxwell:初始电压和击穿电压计算
硬件工程
暮雪倾风19 小时前
【硬件介绍】三极管工作原理(图文+典型电路设计)
单片机·嵌入式硬件