【深度学习】多目标融合算法—样本Loss提权

目录

一、引言

二、样本Loss提权

[2.1 技术原理](#2.1 技术原理)

[2.2 技术优缺点](#2.2 技术优缺点)

三、总结


一、引言

在朴素的深度学习ctr预估模型中(如DNN),通常以一个行为为预估目标,比如通过ctr预估点击率。但实际推荐系统业务场景中,更多是多种目标融合的结果,比如视频推荐,会存在视频点击率、视频完整播放率、视频播放时长等多个目标,而多种目标如何更好的融合,在工业界与学术界均有较多内容产出,由于该环节对实际业务影响最为直接,特开此专栏对推荐系统深度学习多目标问题进行讲述。

今天重点介绍"样本Loss提权",该方法通过训练时梯度乘以样本权重实现对其它目标的加权,方法最为简单。

二、样本Loss提权

2.1 技术原理

所有目标使用一个模型,在标注正样本时,考虑多个目标。例如对于点击和播放,在标注正样本时,给予不同的权重,使它们综合体现在模型目标中。如下表,以视频业务为例,每行为一条训练样本,根据业务需要,把点击视频、视频完播、视频时长的权重分别设置为1、3、5。

该方法通过对不同正向行为给予不同权重,将多目标问题转化为单目标问题。本质是保证一个主目标的同时,将其它目标转化为样本权重,通过复制行为的方法改变数据分布,达到优化其它目标的效果。

2.2 技术优缺点

优点:

  • 模型简单:易于理解,仅在训练时通过梯度乘以样本权重实现对其它目标的加权
  • 成本较低:相比于训练多个目标模型再融合,单模型资源及维护成本更低

缺点:

  • 优化周期长:每次调整样本加权系数,都需要重新训练模型至其收敛
  • 跷跷板问题:多个目标之间可能存在相关或互斥的问题,导致一个行为指标提升的同时,另一个指标下降。

三、总结

本文从技术原理和技术优缺点方面对推荐系统深度学习多目标融合的"样本Loss加权"进行简要讲解,本质是对多个样本行为进行复制,以达到对预期指标的强化,具有模型简单,成本较低的优点,但同时优化周期长、多个指标跷跷板问题也是该方法的缺点,业界针对该方法的缺点进行了一系列的升级,专栏中会逐步讲解,期待您的关注。

相关推荐
夏鹏今天学习了吗4 小时前
【LeetCode热题100(82/100)】单词拆分
算法·leetcode·职场和发展
数科云4 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区4 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
mit6.8245 小时前
mysql exe
算法
软件供应链安全指南5 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu5 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现5 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
2501_901147835 小时前
动态规划在整除子集问题中的应用与高性能实现分析
算法·职场和发展·动态规划
技术小黑屋_5 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z5 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型