【深度学习】多目标融合算法—样本Loss提权

目录

一、引言

二、样本Loss提权

[2.1 技术原理](#2.1 技术原理)

[2.2 技术优缺点](#2.2 技术优缺点)

三、总结


一、引言

在朴素的深度学习ctr预估模型中(如DNN),通常以一个行为为预估目标,比如通过ctr预估点击率。但实际推荐系统业务场景中,更多是多种目标融合的结果,比如视频推荐,会存在视频点击率、视频完整播放率、视频播放时长等多个目标,而多种目标如何更好的融合,在工业界与学术界均有较多内容产出,由于该环节对实际业务影响最为直接,特开此专栏对推荐系统深度学习多目标问题进行讲述。

今天重点介绍"样本Loss提权",该方法通过训练时梯度乘以样本权重实现对其它目标的加权,方法最为简单。

二、样本Loss提权

2.1 技术原理

所有目标使用一个模型,在标注正样本时,考虑多个目标。例如对于点击和播放,在标注正样本时,给予不同的权重,使它们综合体现在模型目标中。如下表,以视频业务为例,每行为一条训练样本,根据业务需要,把点击视频、视频完播、视频时长的权重分别设置为1、3、5。

该方法通过对不同正向行为给予不同权重,将多目标问题转化为单目标问题。本质是保证一个主目标的同时,将其它目标转化为样本权重,通过复制行为的方法改变数据分布,达到优化其它目标的效果。

2.2 技术优缺点

优点:

  • 模型简单:易于理解,仅在训练时通过梯度乘以样本权重实现对其它目标的加权
  • 成本较低:相比于训练多个目标模型再融合,单模型资源及维护成本更低

缺点:

  • 优化周期长:每次调整样本加权系数,都需要重新训练模型至其收敛
  • 跷跷板问题:多个目标之间可能存在相关或互斥的问题,导致一个行为指标提升的同时,另一个指标下降。

三、总结

本文从技术原理和技术优缺点方面对推荐系统深度学习多目标融合的"样本Loss加权"进行简要讲解,本质是对多个样本行为进行复制,以达到对预期指标的强化,具有模型简单,成本较低的优点,但同时优化周期长、多个指标跷跷板问题也是该方法的缺点,业界针对该方法的缺点进行了一系列的升级,专栏中会逐步讲解,期待您的关注。

相关推荐
谈笑也风生5 分钟前
经典算法题型之排序算法(三)
java·算法·排序算法
wp123_15 分钟前
射频设计中的无磁空心电感抉择:Coilcraft A01TKLC VS 国产替代TONEVEE FTA01-2N5K
人工智能·制造
泰迪智能科技8 分钟前
新疆高校大数据人工智能实验室建设案例
大数据·人工智能
540_54011 分钟前
ADVANCE Day32
人工智能·python·机器学习
STLearner16 分钟前
AAAI 2026 | 图基础模型(GFM)&文本属性图(TAG)高分论文
人工智能·python·深度学习·神经网络·机器学习·数据挖掘·图论
Light6016 分钟前
数据战争的星辰大海:从纷争到融合,五大核心架构的终局之战与AI新纪元
大数据·人工智能·数据治理·湖仓一体·数据中台·数据架构·选型策略
Seon塞翁1 小时前
2025年AI大事记:从 DeepSeek R1 到 MiniMax M2.1,我们改变了什么?
人工智能
小李子不吃李子1 小时前
人工智能与创新第二章练习题
人工智能·学习
deephub1 小时前
Lux 上手指南:让 AI 直接操作你的电脑
人工智能·python·大语言模型·agent
大佬,救命!!!1 小时前
对算子shape相关的属性值自动化处理
python·算法·自动化·学习笔记·算子·用例脚本·算子形状