【深度学习】多目标融合算法—样本Loss提权

目录

一、引言

二、样本Loss提权

[2.1 技术原理](#2.1 技术原理)

[2.2 技术优缺点](#2.2 技术优缺点)

三、总结


一、引言

在朴素的深度学习ctr预估模型中(如DNN),通常以一个行为为预估目标,比如通过ctr预估点击率。但实际推荐系统业务场景中,更多是多种目标融合的结果,比如视频推荐,会存在视频点击率、视频完整播放率、视频播放时长等多个目标,而多种目标如何更好的融合,在工业界与学术界均有较多内容产出,由于该环节对实际业务影响最为直接,特开此专栏对推荐系统深度学习多目标问题进行讲述。

今天重点介绍"样本Loss提权",该方法通过训练时梯度乘以样本权重实现对其它目标的加权,方法最为简单。

二、样本Loss提权

2.1 技术原理

所有目标使用一个模型,在标注正样本时,考虑多个目标。例如对于点击和播放,在标注正样本时,给予不同的权重,使它们综合体现在模型目标中。如下表,以视频业务为例,每行为一条训练样本,根据业务需要,把点击视频、视频完播、视频时长的权重分别设置为1、3、5。

该方法通过对不同正向行为给予不同权重,将多目标问题转化为单目标问题。本质是保证一个主目标的同时,将其它目标转化为样本权重,通过复制行为的方法改变数据分布,达到优化其它目标的效果。

2.2 技术优缺点

优点:

  • 模型简单:易于理解,仅在训练时通过梯度乘以样本权重实现对其它目标的加权
  • 成本较低:相比于训练多个目标模型再融合,单模型资源及维护成本更低

缺点:

  • 优化周期长:每次调整样本加权系数,都需要重新训练模型至其收敛
  • 跷跷板问题:多个目标之间可能存在相关或互斥的问题,导致一个行为指标提升的同时,另一个指标下降。

三、总结

本文从技术原理和技术优缺点方面对推荐系统深度学习多目标融合的"样本Loss加权"进行简要讲解,本质是对多个样本行为进行复制,以达到对预期指标的强化,具有模型简单,成本较低的优点,但同时优化周期长、多个指标跷跷板问题也是该方法的缺点,业界针对该方法的缺点进行了一系列的升级,专栏中会逐步讲解,期待您的关注。

相关推荐
快乐非自愿13 小时前
AI重构低代码开发:从“可视化编码”到“自然语言编程”(技术解析+实战案例)
人工智能·低代码·重构
Swift社区14 小时前
LeetCode 447 - 回旋镖的数量
linux·算法·leetcode
秋刀鱼 ..14 小时前
第五届机电一体化、自动化与智能控制国际学术会议(MAIC 2025)
运维·人工智能·python·机器人·自动化·制造·新人首发
java修仙传14 小时前
力扣hot100:路径总和III
数据结构·算法·leetcode
多则惑少则明14 小时前
AI测试、大模型测试(五)AI测试工具有哪些
人工智能·测试工具·ai测试·大模型测试
沃丰科技14 小时前
以全栈AI能力重塑智能客服服务效能
人工智能·机器学习·自然语言处理
O561 6O623O7 安徽正华露14 小时前
(露)冷光源 大鼠洞板 新生鼠适配器
人工智能
musk121214 小时前
深度学习中 z-score 标准化理解
人工智能·深度学习·z-socre
小脉传媒GEO优化14 小时前
掌控数据燃料:面向ChatGPT的数据策略优化指南
人工智能·chatgpt
多则惑少则明14 小时前
AI测试、大模型测试(四)AI测试分类&AI测试岗位分工
人工智能·ai测试·大模型测试·算法测试