数据挖掘——决策树分类

数据挖掘------决策树分类

决策树分类

树状结构,可以很好的对数据进行分类;

  • 决策树的根节点到叶节点的每一条路径构建一条规则;
  • 具有互斥且完备的特点,即每一个样本均被且只能被一条路径所覆盖;
  • 只要提供的数据量足够庞大真实,通过数据挖掘模式,就可以构造决策树。

Hunt算法

设 D t D_t Dt是与节点相关联的训练记录集
算法步骤:

  1. 如果 D t D_t Dt中所有记录都属于同一个类 y t y_t yt,则t是叶节点,用 y t y_t yt标记。
  2. 如果 D t D_t Dt中包含属于多个类的记录,则选择一个属性测试条件,将记录划分成较小的子集
  3. 对于测试条件的每个输出,创建一个子结点,并根据测试结果将 D t D_t Dt中的记录分布到子结点中。然后,对于每个子结点,递归地调用该算法。

Hunt算法采用贪心策略构建决策树

  • 在选择划分数据的属性时,采取一系列局部最优决策来构造决策树。

决策树归纳的设计问题

  • 如何分裂训练记录?
    • 怎样为不同类型的属性指定测试条件?
    • 怎样评估每种测试条件?
  • 如何停止分裂过程?

怎样为不同类型的属性指定测试条件?

  • 依赖于属性的类型

    • 标称
    • 序数
    • 连续
  • 依赖于划分的路数

    • 多路划分
    • 二元划分

怎样选择最佳划分?

选择最佳划分的度量通常是根据划分后子节点纯性的程度。
纯性的程度越高,类分布就越倾斜,划分结果越好。

信息增益

熵的定义如下:
Entropy ⁡ ( S ) = − ∑ i = 1 c p i log ⁡ ( p i ) \operatorname{Entropy}(S)=-\sum_{i=1}^{c} p_{i} \log \left(p_{i}\right) Entropy(S)=−i=1∑cpilog(pi)

信息增益定义如下:
Gain ⁡ ( S , A ) = Entropy ⁡ ( S ) − ∑ v ∈ A ∣ S v ∣ ∣ S ∣ Entropy ⁡ ( S v ) \operatorname{Gain}(S, A)=\operatorname{Entropy}(S)-\sum_{v \in A} \frac{\left|S_{v}\right|}{|S|} \operatorname{Entropy}\left(S_{v}\right) Gain(S,A)=Entropy(S)−v∈A∑∣S∣∣Sv∣Entropy(Sv)

信息增益表示的是:得知特征X的信息而使得分类Y的信息的不确定性减少的程度,如果某个特征的信息增益比较大,就表示该特征对结果的影响较大。

举例说明:



增益比率

信息增益问题:取值比较多的特征比取值少的特征信息增益大
解决方案:使用增益率,K越大,SplitINFO越大,增益率被平衡
G a i n R A T I O s p l i t = GAIN split SplitINFO {{GainRATIO_{split}}}=\frac{\text { GAIN }{\text {split }}}{\text { SplitINFO}} GainRATIOsplit= SplitINFO GAIN split
S p l i t I N F O = − ∑ n = 1 k n i n log ⁡ n i n SplitINFO=-\sum
{n=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n} SplitINFO=−n=1∑knnilognni

增益率准则对可取值数目较少的属性有偏好,因此C4.5算法并不是直接选择增益率最大的属性作为分支标准,而是先从侯选属性中找出信息增益高于平均水平的属性,再从中选择增益率最高的属性。

基尼指数

连续数据

  • 二元划分 : ( A < v ) o r ( A ≥ v ) (A<v)or (A≥v) (A<v)or(A≥v)
    • 考虑所有的划分点,选择一个最优划分点v
  • 多路划分 : v i ≤ A < v i + 1 ( i = 1 , ... , k ) v_i≤A<v_{i+1} (i=1,...,k) vi≤A<vi+1(i=1,...,k)

总结

  1. 决策树是一种构建分类(回归)模型的非参数方法
  2. 不需要昂贵的的计算代价
  3. 决策树相对容易解释
  4. 决策树是学习离散值函数的典型代表
  5. 决策数对于噪声的干扰具有相当好的鲁棒性
  6. 冗余属性不会对决策树的准确率造成不利影响
  7. 数据碎片问题:随着树的生长,可能导致叶结点记录数太少,对于叶结点代表的类,不能做出具有统计意义的判决
  8. 子树可能在决策树中重复多次,使决策树过于复杂
  9. 决策树无法学习特征之间的线性关系,难以完成特征构造
相关推荐
CareyWYR2 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信4 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream20094 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟4 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播4 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训4 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
YIN_尹5 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
风筝在晴天搁浅5 小时前
代码随想录 718.最长重复子数组
算法
kyle~5 小时前
算法---回溯算法
算法
mys55185 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化