论文解读之learning to summarize with human feedback

最近在看大模型训练相关的论文,预计会追溯经典的和最新的训练策略以及微调原理等

本次解读经典论文learning to summarize with human feedback

一、简介

部分生成任务需要对齐人类偏好,但是根据最大化可能性(对数似然)进行微调的模型跟真正使用模型的人的喜好并不能直接匹配,即不对齐。

这种不对齐的原因有:(1)最大化可能性目标对于重要和不重要的错误判别的差距不大。(2)模型会对人类的训练数据放置更大的可能性,其中包括低质量的训练数据。(3)采样时的分布偏移可能会降低表现。尽管第三点能够通过不均匀采样策略改善,比如束搜索,但是可能造成重复和不想要的捏造。

本论文的团队基于GPT3和人类反馈强化学习进行了完整的偏好对齐的流程。

主要的贡献如下:

(1)使用人类反馈训练后在英文摘要生成的任务上表现显著。

(2)比有监督模型对于新领域的泛化性更好

(3)对policy和奖励模型进行了严谨的分析

(4)开源人类反馈数据集

创新:模型更大;收集人类反馈的批次设定;保证标注人员和研究人员的评价一致;一些算法改进,比如将policy和奖励模型分开

二、方法和实验细节

在已经有一个训练过的模型(在强化学习中,这个训练好的模型叫policy)的基础上,对于RLHF,通用的三步如下:

1.使用policy模型对同一个prompt进行推理后给标注员进行对比

2.从以上的对比结果中训练一个奖励模型

3.使用奖励模型和PPO算法进行policy模型的优化

对于同一个摘要生成的数据,结果对比:

三、模型结构

所有模型的结构是GPT3风格的Transformer解码器

先在大规模的文本库中使用预测下一个token的形式进行预训练

奖励模型

人类反馈policy模型

前者最大化奖励模型的偏好,后者有两个作用:(1)鼓励模型去探索好的模式,防止单模式崩溃

(2)让模型减少学习和训练时见过的输出相差较大的偏好。

相关推荐
SLY司赖10 分钟前
大模型应用开发之LLM入门
语言模型·chatgpt·llm
vocal18 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua19 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
arbboter26 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
BB_CC_DD27 分钟前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
IT_Octopus39 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能44 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客1 小时前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条1 小时前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po1 小时前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae