论文解读之learning to summarize with human feedback

最近在看大模型训练相关的论文,预计会追溯经典的和最新的训练策略以及微调原理等

本次解读经典论文learning to summarize with human feedback

一、简介

部分生成任务需要对齐人类偏好,但是根据最大化可能性(对数似然)进行微调的模型跟真正使用模型的人的喜好并不能直接匹配,即不对齐。

这种不对齐的原因有:(1)最大化可能性目标对于重要和不重要的错误判别的差距不大。(2)模型会对人类的训练数据放置更大的可能性,其中包括低质量的训练数据。(3)采样时的分布偏移可能会降低表现。尽管第三点能够通过不均匀采样策略改善,比如束搜索,但是可能造成重复和不想要的捏造。

本论文的团队基于GPT3和人类反馈强化学习进行了完整的偏好对齐的流程。

主要的贡献如下:

(1)使用人类反馈训练后在英文摘要生成的任务上表现显著。

(2)比有监督模型对于新领域的泛化性更好

(3)对policy和奖励模型进行了严谨的分析

(4)开源人类反馈数据集

创新:模型更大;收集人类反馈的批次设定;保证标注人员和研究人员的评价一致;一些算法改进,比如将policy和奖励模型分开

二、方法和实验细节

在已经有一个训练过的模型(在强化学习中,这个训练好的模型叫policy)的基础上,对于RLHF,通用的三步如下:

1.使用policy模型对同一个prompt进行推理后给标注员进行对比

2.从以上的对比结果中训练一个奖励模型

3.使用奖励模型和PPO算法进行policy模型的优化

对于同一个摘要生成的数据,结果对比:

三、模型结构

所有模型的结构是GPT3风格的Transformer解码器

先在大规模的文本库中使用预测下一个token的形式进行预训练

奖励模型

人类反馈policy模型

前者最大化奖励模型的偏好,后者有两个作用:(1)鼓励模型去探索好的模式,防止单模式崩溃

(2)让模型减少学习和训练时见过的输出相差较大的偏好。

相关推荐
学历真的很重要5 小时前
VsCode+Roo Code+Gemini 2.5 Pro+Gemini Balance AI辅助编程环境搭建(理论上通过多个Api Key负载均衡达到无限免费Gemini 2.5 Pro)
前端·人工智能·vscode·后端·语言模型·负载均衡·ai编程
普通网友5 小时前
微服务注册中心与负载均衡实战精要,微软 2025 年 8 月更新:对固态硬盘与电脑功能有哪些潜在的影响。
人工智能·ai智能体·技术问答
苍何5 小时前
一人手搓!AI 漫剧从0到1详细教程
人工智能
苍何5 小时前
Gemini 3 刚刷屏,蚂蚁灵光又整活:一句话生成「闪游戏」
人工智能
ariesjzj5 小时前
DeepSeek时代的Large-scale LLM推理
大模型·llm·deepseek·推理优化·大规模ep
苍何5 小时前
越来越对 AI 做的 PPT 敬佩了!(附7大用法)
人工智能
苍何6 小时前
超全Nano Banana Pro 提示词案例库来啦,小白也能轻松上手
人工智能
阿杰学AI7 小时前
AI核心知识39——大语言模型之World Model(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·世界模型·world model·sara
智慧地球(AI·Earth)7 小时前
Vibe Coding:你被取代了吗?
人工智能
大、男人7 小时前
DeepAgent学习
人工智能·学习