CV-MLLM经典论文解读|OneLLM: One Framework to Align All Modalities with Language

论文标题:

OneLLM: One Framework to Align All Modalities with Language

OneLLM:一个框架,将所有模态与语言对齐

论文链接:

Pink: Unveiling the Power of Referential Comprehension for Multi-modal LLMs论文下载

论文作者:

Jiaming Han, Kaixiong Gong, Yiyuan Zhang, Jiaqi Wang, Kaipeng Zhang, Dahua Lin, Yu Qiao, Peng Gao, Xiangyu Yue

内容简介:

本论文介绍了OneLLM,这是一个多模态大型语言模型(MLLM),能够将八种不同的模态与语言对齐,使用统一的框架。OneLLM通过统一的多模态编码器和逐步多模态对齐管道实现这一目标。作者首先训练了一个图像投影模块,将视觉编码器与大型语言模型(LLM)连接起来。然后,他们构建了一个通用投影模块(UPM),通过混合多个图像投影模块和动态路由来实现。最终,他们使用UPM逐步将更多模态与LLM对齐。

为了充分利用OneLLM遵循指令的潜力,作者还策划了一个全面的多模态指令数据集,包括来自图像、音频、视频、点云、深度/法线图、惯性测量单元(IMU)和功能性磁共振成像(fMRI)脑活动的2M项。OneLLM在25个不同的基准测试中进行了评估,涵盖了多模态描述、问题回答和推理等任务,表现出色。

关键点:

1.统一框架:

OneLLM提出了一个统一的框架,用于将多种模态输入与语言对齐,与以往工作不同,它展示了一个统一的多模态编码器,可以作为MLLMs的通用和可扩展组件。

2.多模态编码器和投影模块:

与以往工作不同,OneLLM的编码器和投影模块可以跨所有模态共享,通过预训练的视觉-语言模型和混合投影专家来实现。

3.逐步多模态对齐:

作者提出了一个逐步多模态对齐管道,首先从视觉LLM开始,然后逐步将其他模态与LLM对齐,最终实现对八种模态的支持。

4.多模态指令数据集:

为了充分利用OneLLM的能力,作者策划了一个大规模的多模态指令数据集,包含2M项,涵盖八种模态,通过在该数据集上微调,OneLLM在多模态任务上表现出色。

5.性能评估:

OneLLM在多个基准测试中进行了评估,包括多模态描述、问题回答和推理任务,展现了其优越的性能,超越了以往的专业模型和MLLMs。

CV-MLLM必读论文合集:

CV-MMLM必读论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

论文代码链接: OneLLM GitHub Repository

相关推荐
初学大模型3 分钟前
使用卷积神经网络(CNN)提取文字特征来辅助大语言模型生成文字
人工智能·机器人
咚咚王者4 分钟前
人工智能之数据分析 Matplotlib:第七章 项目实践
人工智能·数据分析·matplotlib
爱看科技10 分钟前
微美全息(NASDAQ:WIMI)双判别器架构:量子生成对抗网络训练的革命性跨越
人工智能·生成对抗网络·量子计算
ziwu16 分钟前
【花朵识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
ziwu17 分钟前
【鸟类识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
深度学习·图像识别
Wise玩转AI18 分钟前
医院智能体系统实战:基于 autogen 0.7 + DeepSeek 的多阶段工程落地(一)项目总览
人工智能·chatgpt·ai智能体·autogen
杭州泽沃电子科技有限公司24 分钟前
煤化工合成环节的监测:智能系统如何保障核心装置安全稳定运行?
运维·人工智能·科技·智能监测·煤化工
努力进修25 分钟前
视界重塑:基于Rokid AI眼镜的沉浸式视力康复训练系统设计与实现
人工智能·医疗健康·rokidsdk·ar开发·视力康复
科普瑞传感仪器27 分钟前
从“盲插”到“智插”:六维力控制技术如何革新PCBA自动化装配?
运维·人工智能·科技·ai·机器人·自动化·无人机
世岩清上29 分钟前
世岩清上:人工智能+园林,科技赋能下的园林新生态
人工智能·科技