101. 孤岛的总面积
python
direction = [[1, 0], [-1, 0], [0, 1], [0, -1]]
result = 0
def dfs(grid, y, x):
grid[y][x] = 0
global result
result += 1
for i, j in direction:
next_x = x + j
next_y = y + i
if (next_x < 0 or next_y < 0 or
next_x >= len(grid[0]) or next_y >= len(grid)
):
continue
if grid[next_y][next_x] == 1 and not visited[next_y][next_x]:
visited[next_y][next_x] = True
dfs(grid, next_y, next_x)
n, m = map(int, input().split())
grid = []
visited = [[False] * m for _ in range(n)]
for i in range(n):
grid.append(list(map(int, input().split())))
# 处理边界
for j in range(m):
# 上边界
if grid[0][j] == 1 and not visited[0][j]:
visited[0][j] = True
dfs(grid, 0, j)
# 下边界
if grid[n - 1][j] == 1 and not visited[n - 1][j]:
visited[n - 1][j] = True
dfs(grid, n - 1, j)
for i in range(n):
# 左边界
if grid[i][0] == 1 and not visited[i][0]:
visited[i][0] = True
dfs(grid, i, 0)
# 右边界
if grid[i][m - 1] == 1 and not visited[i][m - 1]:
visited[i][m - 1] = True
dfs(grid, i, m - 1)
# 计算孤岛总面积
result = 0 # 初始化
for i in range(n):
for j in range(m):
if grid[i][j] == 1 and not visited[i][j]:
visited[i][j] = True
dfs(grid, i, j)
# 输出孤岛的总面积
print(result)
102. 沉没孤岛
思路:
从地图周边出发,将周边空格相邻的陆地都做上标记,然后在遍历一遍地图,遇到 陆地 且没做过标记的,那么都是地图中间的 陆地 ,全部改成水域就行。
**方法:**直接改陆地为其他特殊值作为标记的方式进行;
步骤一:深搜或者广搜将地图周边的 1 (陆地)全部改成 2 (特殊标记)
步骤二:将水域中间 1 (陆地)全部改成 水域(0)
步骤三:将之前标记的 2 改为 1 (陆地)
python
def dfs(grid, x, y):
grid[x][y] = 2
directions = [[-1, 0], [0, -1], [1, 0], [0, 1]]
for dx, dy in directions:
next_x, next_y = x + dx, y + dy
# 超过边界
if next_x < 0 or next_x >= len(grid) or next_y < 0 or next_y >= len(grid[0]):
continue
if grid[next_x][next_y] == 0 or grid[next_x][next_y] == 2:
continue
dfs(grid, next_x, next_y)
def main():
n, m = map(int, input().split())
grid = [[False] * m for _ in range(n)]
# 步骤一
# 从左侧边,和右侧边,向中间遍历
for i in range(n):
if grid[i][0] == 1:
dfs(grid, i, 0)
if grid[i][m-1] == 1:
dfs(grid, i, m-1)
# 从上边和下边,向中间遍历
for j in range(m):
if grid[0][j] == 1:
dfs(grid, 0, j)
if grid[n-1][j] == 1:
dfs(grid, n-1, j)
# 步骤二、步骤三
for i in range(n):
for j in range(m):
if grid[i][j] == 1:
grid[i][j] = 0
if grid[i][j] == 2:
grid[i][j] == 1
# 打印结果
for row in grid:
print(' '.join(map(str, row)))
if __name__ == '__main__':
main()
103. 水流问题
**想法:**遍历每个点,然后看这个点能不能同时到达第一组边界和第二组边界
**优化方法:**没想到,也有待理解,只按照题解敲了代码
python
first = set()
second = set()
directions = [[-1, 0], [0, 1], [1, 0], [0, -1]]
def dfs(i, j, graph, visited, side):
if visited[i][j]:
return
visited[i][j] = True
side.add((i, j))
for x, y in directions:
new_x = i + x
new_y = j + y
if (
0 <= new_x < len(graph)
and 0 <= new_y < len(graph[0])
and int(graph[new_x][new_y]) >= int(graph[i][j])
):
dfs(new_x, new_y, graph, visited, side)
def main():
global first
global second
N, M = map(int, input().strip().split())
graph = []
for _ in range(N):
row = input().strip().split()
graph.append(row)
# 是否可到达第一边界
visited = [[False] * M for _ in range(N)]
for i in range(M):
dfs(0, i, graph, visited, first)
for i in range(N):
dfs(i, 0, graph, visited, first)
# 是否可到达第二边界
visited = [[False] * M for _ in range(N)]
for i in range(M):
dfs(N - 1, i, graph, visited, second)
for i in range(N):
dfs(i, M - 1, graph, visited, second)
# 可到达第一边界和第二边界
res = first & second
for x, y in res:
print(f"{x} {y}")
if __name__ == "__main__":
main()
104. 建造最大岛屿
要求:最多可以将矩阵中的一格水变为一块陆地;
思路:遍历地图尝试 将每一个 0 改成1,然后去搜索地图中的最大的岛屿面积;
优化思路:用一次深搜把每个岛屿的面积记录下来就好;
第一步:一次遍历地图,得出各个岛屿的面积,并做编号记录。可以使用map记录,key为岛屿编号,value为岛屿面积
第二步:再遍历地图,遍历0的方格(因为要将0变成1),并统计该1(由0变成的1)周边岛屿面积,将其相邻面积相加在一起,遍历所有 0 之后,就可以得出 选一个0变成1 之后的最大面积。
本题没有理解,暂时放一放;
python
from typing import List
from collections import defaultdict
class Solution:
def __init__(self):
self.direction = [(1,0),(-1,0),(0,1),(0,-1)]
self.res = 0
self.count = 0
self.idx = 1
self.count_area = defaultdict(int)
def max_area_island(self, grid: List[List[int]]) -> int:
if not grid or len(grid) == 0 or len(grid[0]) == 0:
return 0
for i in range(len(grid)):
for j in range(len(grid[0])):
if grid[i][j] == 1:
self.count = 0
self.idx += 1
self.dfs(grid,i,j)
# print(grid)
self.check_area(grid)
# print(self.count_area)
if self.check_largest_connect_island(grid=grid):
return self.res + 1
return max(self.count_area.values())
def dfs(self,grid,row,col):
grid[row][col] = self.idx
self.count += 1
for dr,dc in self.direction:
_row = dr + row
_col = dc + col
if 0<=_row<len(grid) and 0<=_col<len(grid[0]) and grid[_row][_col] == 1:
self.dfs(grid,_row,_col)
return
def check_area(self,grid):
m, n = len(grid), len(grid[0])
for row in range(m):
for col in range(n):
self.count_area[grid[row][col]] = self.count_area.get(grid[row][col],0) + 1
return
def check_largest_connect_island(self,grid):
m, n = len(grid), len(grid[0])
has_connect = False
for row in range(m):
for col in range(n):
if grid[row][col] == 0:
has_connect = True
area = 0
visited = set()
for dr, dc in self.direction:
_row = row + dr
_col = col + dc
if 0<=_row<len(grid) and 0<=_col<len(grid[0]) and grid[_row][_col] != 0 and grid[_row][_col] not in visited:
visited.add(grid[_row][_col])
area += self.count_area[grid[_row][_col]]
self.res = max(self.res, area)
return has_connect
def main():
m, n = map(int, input().split())
grid = []
for i in range(m):
grid.append(list(map(int,input().split())))
sol = Solution()
print(sol.max_area_island(grid))
if __name__ == '__main__':
main()