决定系数(R²分数)——评估回归模型性能的一个指标

目录

1.定义

2.计算举例

[3. 结果分析](#3. 结果分析)


1.定义

R²(R平方)分数,也称为决定系数,是用来评估回归模型性能的一个指标。它表示自变量解释因变量变异性的比例。R²分数的取值范围通常在0到1之间,其值越接近1,说明模型拟合效果越好。

R²分数的计算公式如下:

其中:

  • 表示残差平方和(Residual Sum of Squares),即实际值与预测值之间的差异的平方和。
  • 表示总平方和(Total Sum of Squares),即实际值与均值之间的差异的平方和。

具体来说, 的计算方式如下:

其中:

  • 是第 i 个样本的实际值。
  • 是第 i 个样本的预测值。
  • 是所有实际值的平均值。
  • n 是样本的数量。

2.计算举例

假设我们有一个简单的数据集,包含3个样本点:

样本 实际值 (y) 预测值 ()
1 3 2.5
2 5 4.8
3 7 6.9

首先计算

  1. 计算

2.计算

3.计算

4.最后计算

因此,该模型的 分数为 0.9625,表明模型对数据的拟合效果很好。

3. 结果分析

  • 接近1时,说明模型能够很好地解释数据的变化。
  • 接近0时,说明模型的预测能力较差。
  • 如果模型总是预测一个常数值(例如,所有样本的平均值),那么 将为0。
  • 如果模型的预测值总是等于实际值,那么 将为1。
相关推荐
纪伊路上盛名在18 小时前
矩阵微积分速通
深度学习·线性代数·机器学习·矩阵·微积分
权泽谦19 小时前
病灶变化预测 vs 分类:医学影像 AI 中更有价值的问题是什么?
人工智能·机器学习·ai·分类·数据挖掘
过期的秋刀鱼!20 小时前
机器学习-逻辑回归的成本函数
人工智能·机器学习·逻辑回归
武子康20 小时前
大数据-201 决策树从分裂到剪枝:信息增益/增益率、连续变量与CART要点
大数据·后端·机器学习
应用市场20 小时前
# 内容平台推荐算法与创作者激励机制——从抖音/B站看流量分配的技术逻辑
算法·机器学习·推荐算法
阿正的梦工坊20 小时前
VisualTrap:一种针对 GUI Agent 的隐蔽视觉后门攻击
人工智能·深度学习·机器学习·语言模型·自然语言处理
渡我白衣20 小时前
从直觉到公式——线性模型的原理、实现与解释
人工智能·深度学习·神经网络·机器学习·计算机视觉·自然语言处理·caffe
大千AI助手20 小时前
DeepSeek V3.2 能不能真正跑 Agent?
人工智能·机器学习·agent·智能体·deepseek·deepseek-v3.2·大千ai助手
2401_8414956420 小时前
【机器学习】生成对抗网络(GAN)
人工智能·python·深度学习·神经网络·算法·机器学习·生成对抗网络
阿正的梦工坊20 小时前
二次预训练与微调的区别
人工智能·深度学习·机器学习·大模型·llm