决定系数(R²分数)——评估回归模型性能的一个指标

目录

1.定义

2.计算举例

[3. 结果分析](#3. 结果分析)


1.定义

R²(R平方)分数,也称为决定系数,是用来评估回归模型性能的一个指标。它表示自变量解释因变量变异性的比例。R²分数的取值范围通常在0到1之间,其值越接近1,说明模型拟合效果越好。

R²分数的计算公式如下:

其中:

  • 表示残差平方和(Residual Sum of Squares),即实际值与预测值之间的差异的平方和。
  • 表示总平方和(Total Sum of Squares),即实际值与均值之间的差异的平方和。

具体来说, 的计算方式如下:

其中:

  • 是第 i 个样本的实际值。
  • 是第 i 个样本的预测值。
  • 是所有实际值的平均值。
  • n 是样本的数量。

2.计算举例

假设我们有一个简单的数据集,包含3个样本点:

样本 实际值 (y) 预测值 ()
1 3 2.5
2 5 4.8
3 7 6.9

首先计算

  1. 计算

2.计算

3.计算

4.最后计算

因此,该模型的 分数为 0.9625,表明模型对数据的拟合效果很好。

3. 结果分析

  • 接近1时,说明模型能够很好地解释数据的变化。
  • 接近0时,说明模型的预测能力较差。
  • 如果模型总是预测一个常数值(例如,所有样本的平均值),那么 将为0。
  • 如果模型的预测值总是等于实际值,那么 将为1。
相关推荐
人工智能培训21 分钟前
深度学习—卷积神经网络(3)
人工智能·深度学习·神经网络·机器学习·cnn·智能体
wjykp1 小时前
79~87逻辑回归f
算法·机器学习·逻辑回归
极客BIM工作室1 小时前
Manus 技术壁垒深度拆解
人工智能·机器学习
Maxwell_li11 小时前
机器学习知识点梳理(回归模型、分类模型、聚类模型、评估方法)-思维导图
机器学习·分类·回归·聚类
Maxwell_li11 小时前
机器学习知识点梳理(回归模型、分类模型、聚类模型、评估方法)
机器学习·分类·回归·学习方法·聚类·改行学it
咚咚王者1 小时前
人工智能之核心基础 机器学习 第三章 线性回归与逻辑回归
人工智能·机器学习·线性回归
540_5402 小时前
ADVANCE Day31
人工智能·python·机器学习
Das12 小时前
【机器学习】02_线性模型
人工智能·机器学习
adjust25863 小时前
day 46
人工智能·机器学习·numpy
兜兜转转了多少年4 小时前
《Python 应用机器学习:代码实战指南》笔记2 从0理解机器学习 —— 核心概念全解析
笔记·python·机器学习