决定系数(R²分数)——评估回归模型性能的一个指标

目录

1.定义

2.计算举例

[3. 结果分析](#3. 结果分析)


1.定义

R²(R平方)分数,也称为决定系数,是用来评估回归模型性能的一个指标。它表示自变量解释因变量变异性的比例。R²分数的取值范围通常在0到1之间,其值越接近1,说明模型拟合效果越好。

R²分数的计算公式如下:

其中:

  • 表示残差平方和(Residual Sum of Squares),即实际值与预测值之间的差异的平方和。
  • 表示总平方和(Total Sum of Squares),即实际值与均值之间的差异的平方和。

具体来说, 的计算方式如下:

其中:

  • 是第 i 个样本的实际值。
  • 是第 i 个样本的预测值。
  • 是所有实际值的平均值。
  • n 是样本的数量。

2.计算举例

假设我们有一个简单的数据集,包含3个样本点:

样本 实际值 (y) 预测值 ()
1 3 2.5
2 5 4.8
3 7 6.9

首先计算

  1. 计算

2.计算

3.计算

4.最后计算

因此,该模型的 分数为 0.9625,表明模型对数据的拟合效果很好。

3. 结果分析

  • 接近1时,说明模型能够很好地解释数据的变化。
  • 接近0时,说明模型的预测能力较差。
  • 如果模型总是预测一个常数值(例如,所有样本的平均值),那么 将为0。
  • 如果模型的预测值总是等于实际值,那么 将为1。
相关推荐
咚咚王者22 分钟前
人工智能之核心基础 机器学习 第十章 降维算法
人工智能·算法·机器学习
少林码僧9 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)9 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
宝贝儿好10 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
Niuguangshuo10 小时前
EM算法详解:解密“鸡生蛋“的机器学习困局
算法·机器学习·概率论
wm104310 小时前
机器学习之线性回归
人工智能·机器学习·线性回归
sonadorje11 小时前
逻辑回归中的条件概率
算法·机器学习·逻辑回归
黑客思维者12 小时前
机器学习071:深度学习【卷积神经网络】目标检测“三剑客”:YOLO、SSD、Faster R-CNN对比
深度学习·yolo·目标检测·机器学习·cnn·ssd·faster r-cnn
ECT-OS-JiuHuaShan13 小时前
哲学第三次世界大战:《易经》递归生成论打破西方机械还原论
人工智能·程序人生·机器学习·数学建模·量子计算
colfree15 小时前
Scanpy
人工智能·机器学习