决定系数(R²分数)——评估回归模型性能的一个指标

目录

1.定义

2.计算举例

[3. 结果分析](#3. 结果分析)


1.定义

R²(R平方)分数,也称为决定系数,是用来评估回归模型性能的一个指标。它表示自变量解释因变量变异性的比例。R²分数的取值范围通常在0到1之间,其值越接近1,说明模型拟合效果越好。

R²分数的计算公式如下:

其中:

  • 表示残差平方和(Residual Sum of Squares),即实际值与预测值之间的差异的平方和。
  • 表示总平方和(Total Sum of Squares),即实际值与均值之间的差异的平方和。

具体来说, 的计算方式如下:

其中:

  • 是第 i 个样本的实际值。
  • 是第 i 个样本的预测值。
  • 是所有实际值的平均值。
  • n 是样本的数量。

2.计算举例

假设我们有一个简单的数据集,包含3个样本点:

样本 实际值 (y) 预测值 ()
1 3 2.5
2 5 4.8
3 7 6.9

首先计算

  1. 计算

2.计算

3.计算

4.最后计算

因此,该模型的 分数为 0.9625,表明模型对数据的拟合效果很好。

3. 结果分析

  • 接近1时,说明模型能够很好地解释数据的变化。
  • 接近0时,说明模型的预测能力较差。
  • 如果模型总是预测一个常数值(例如,所有样本的平均值),那么 将为0。
  • 如果模型的预测值总是等于实际值,那么 将为1。
相关推荐
koo3641 小时前
李宏毅机器学习笔记30
人工智能·笔记·机器学习
长桥夜波1 小时前
机器学习日报02
人工智能·机器学习·neo4j
tainshuai1 小时前
YOLOv4 实战指南:单 GPU 训练的目标检测利器
yolo·目标检测·机器学习
wperseverance2 小时前
Pytorch常用层总结
深度学习·机器学习
Theodore_10224 小时前
机器学习(7)逻辑回归及其成本函数
人工智能·机器学习
彩云回6 小时前
LOESS回归
人工智能·机器学习·回归·1024程序员节
Ai173163915796 小时前
英伟达RTX 6000 Ada 和L40S 对比,哪个更适合做深度学习?
图像处理·人工智能·gpt·深度学习·神经网络·机器学习·电脑
Theodore_10226 小时前
机器学习(8)梯度下降的实现与过拟合问题
人工智能·深度学习·机器学习·计算机视觉·线性回归
我爱鸢尾花7 小时前
CNN基础理论讲解及Python代码复现
人工智能·python·深度学习·神经网络·算法·机器学习·cnn
isyoungboy8 小时前
使用SVM构建光照鲁棒的颜色分类器:从特征提取到SVM
算法·机器学习·支持向量机