决定系数(R²分数)——评估回归模型性能的一个指标

目录

1.定义

2.计算举例

[3. 结果分析](#3. 结果分析)


1.定义

R²(R平方)分数,也称为决定系数,是用来评估回归模型性能的一个指标。它表示自变量解释因变量变异性的比例。R²分数的取值范围通常在0到1之间,其值越接近1,说明模型拟合效果越好。

R²分数的计算公式如下:

其中:

  • 表示残差平方和(Residual Sum of Squares),即实际值与预测值之间的差异的平方和。
  • 表示总平方和(Total Sum of Squares),即实际值与均值之间的差异的平方和。

具体来说, 的计算方式如下:

其中:

  • 是第 i 个样本的实际值。
  • 是第 i 个样本的预测值。
  • 是所有实际值的平均值。
  • n 是样本的数量。

2.计算举例

假设我们有一个简单的数据集,包含3个样本点:

样本 实际值 (y) 预测值 ()
1 3 2.5
2 5 4.8
3 7 6.9

首先计算

  1. 计算

2.计算

3.计算

4.最后计算

因此,该模型的 分数为 0.9625,表明模型对数据的拟合效果很好。

3. 结果分析

  • 接近1时,说明模型能够很好地解释数据的变化。
  • 接近0时,说明模型的预测能力较差。
  • 如果模型总是预测一个常数值(例如,所有样本的平均值),那么 将为0。
  • 如果模型的预测值总是等于实际值,那么 将为1。
相关推荐
高锰酸钾_20 小时前
机器学习基础 | KNN(K-近邻)
人工智能·机器学习
CM莫问20 小时前
详解机器学习经典模型(原理及应用)——岭回归
人工智能·python·算法·机器学习·回归
xcLeigh20 小时前
AI的提示词专栏:Prompt 与传统机器学习特征工程的异同
人工智能·机器学习·ai·prompt·提示词
DuHz20 小时前
论文阅读——Edge Impulse:面向微型机器学习的MLOps平台
论文阅读·人工智能·物联网·算法·机器学习·edge·边缘计算
诚丞成20 小时前
机器学习——生成对抗网络(GANs):原理、进展与应用前景分析
人工智能·机器学习·生成对抗网络
爱数学的程序猿20 小时前
机器学习“捷径”:自动特征工程全面解析
人工智能·机器学习
一个处女座的程序猿20 小时前
AI:新书预告—从机器学习避坑指南(分类/回归/聚类/可解释性)到大语言模型落地手记(RAG/Agent/MCP),一场耗时5+3年的技术沉淀—“代码可跑,经验可抄”—【一个处女座的程序猿】携两本AI
人工智能·机器学习·大语言模型
行走的bug...1 天前
支持向量机
算法·机器学习·支持向量机
MM_MS1 天前
C# 线程与并发编程完全指南:从基础到高级带详细注释版(一篇读懂)
开发语言·机器学习·计算机视觉·c#·简单工厂模式·visual studio
Dfreedom.1 天前
机器学习模型误差深度解读:从三类来源到偏差-方差权衡
人工智能·深度学习·机器学习·误差·偏差方差权衡