概率论常用的分布公式

01 常见离散型分布及其概率分布、期望和方差公式

伯努利分布

  • 概率分布
  • 期望: E(X)=p
  • 方差:D(X)=p(1−p)

二项分布

  • 概率分布
  • 期望:E(X)=np
  • 方差: D(X)=np(1−p)
  • **表示方法:**X∼B(n,p)

泊松分布

  • 概率分布
  • 期望:E(X)=λ
  • 方差: D(X)=λ
  • 表示方法:X∼P(λ)

几何分布

  • 概率分布
  • 期望
  • 方差

超几何分布

  • 概率分布
  • 期望
  • 方差
  • 表示方法:X∼h(n,N,M)

单点分布

  • 概率分布:P{x=a} = 1
分布名称 概率分布 期望公式 方差公式
0-1分布 P(X = 1) = p, P(X = 0) = q (q = 1 - p) E(X) = p Var(X) = pq
二项分布 P(X = k) = C(n, k) * p^k * q^(n-k) (k = 0, 1,..., n) E(X) = np Var(X) = npq
泊松分布 P(X = k) = (λ^k * e^(-λ)) / k! (k = 0, 1, 2,...) E(X) = λ Var(X) = λ
几何分布 P(X = k) = q^(k-1) * p (k = 1, 2, 3,...) E(X) = 1/p Var(X) = (1-p)/p^2
超几何分布 P(X = k) = (C(M, k) * C(N-M, n-k)) / C(N, n) (k = 0, 1,..., min(M, n)) E(X) = (nM)/N Var(X) = (nM(N-M)(N-n))/(N^2(N-1))

02 常见的连续型分布包括以下几种:

均匀分布

  • 概率密度函数
  • 期望
  • 方差

正态分布

  • 概率密度函数
  • 期望:E(X)=μ
  • 方差: Var(X)=σ^2
  • 标准化公式为:
  • 表示方法:N(μ,σ^2)

指数分布

  • 概率密度函数: f(x)=λexp(−λx) ,其中 x≥0
  • 期望: E(X)=1/λ
  • 方差 : Var(X)=1/λ^2

伽马分布

  • 概率密度函数
  • 期望:E(X)=α/λ
  • 方差: Var(X)=α/λ^2

贝塔分布

  • 概率密度函数
  • 期望: E(X)=a/(a+b)
  • 方差

卡方分布

  • 概率密度函数
  • 期望: E(X)=k
  • 方差: Var(X)=2k
  1. 柯西分布
    • 概率密度函数
    • 期望:不存在
    • 方差:不存在

对数正态分布

  • 概率密度函数
  • 期望
  • 方差

韦布尔分布

  • 概率密度函数
  • 期望
  • 方差
分布名称 概率密度函数 表示方法 期望 方差
正态分布 N(μ,σ^2) μ
均匀分布 U(a,b)
指数分布 Exp(λ)
伽玛分布 Γ(r,λ)
贝塔分布 B(α,β)
对数正态分布 LN(μ,σ^2)
韦布尔分布 W(k,λ)
相关推荐
BlackPercy1 小时前
【概率论】 随机变量序列的收敛性
概率论
赵青临的辉1 天前
基础数学:线性代数与概率论在AI中的应用
人工智能·线性代数·概率论
ZhangJiQun&MXP1 天前
Top-p采样:解锁语言模型的创意之门
人工智能·深度学习·机器学习·语言模型·自然语言处理·langchain·概率论
熊峰峰3 天前
3.5 统计初步
考研·概率论
Alessio Micheli3 天前
基于几何布朗运动的股价预测模型构建与分析
线性代数·机器学习·概率论
熊峰峰3 天前
3.4 数字特征
概率论
SZ1701102315 天前
泰勒展开式
线性代数·概率论
Deep_Kevin6 天前
鞅与停时 - 一种特别的概率论问题
概率论
Alessio Micheli6 天前
金融学知识笔记
概率论
夏至5607 天前
概统期末复习--速成
概率论