概率论常用的分布公式

01 常见离散型分布及其概率分布、期望和方差公式

伯努利分布

  • 概率分布
  • 期望: E(X)=p
  • 方差:D(X)=p(1−p)

二项分布

  • 概率分布
  • 期望:E(X)=np
  • 方差: D(X)=np(1−p)
  • **表示方法:**X∼B(n,p)

泊松分布

  • 概率分布
  • 期望:E(X)=λ
  • 方差: D(X)=λ
  • 表示方法:X∼P(λ)

几何分布

  • 概率分布
  • 期望
  • 方差

超几何分布

  • 概率分布
  • 期望
  • 方差
  • 表示方法:X∼h(n,N,M)

单点分布

  • 概率分布:P{x=a} = 1
分布名称 概率分布 期望公式 方差公式
0-1分布 P(X = 1) = p, P(X = 0) = q (q = 1 - p) E(X) = p Var(X) = pq
二项分布 P(X = k) = C(n, k) * p^k * q^(n-k) (k = 0, 1,..., n) E(X) = np Var(X) = npq
泊松分布 P(X = k) = (λ^k * e^(-λ)) / k! (k = 0, 1, 2,...) E(X) = λ Var(X) = λ
几何分布 P(X = k) = q^(k-1) * p (k = 1, 2, 3,...) E(X) = 1/p Var(X) = (1-p)/p^2
超几何分布 P(X = k) = (C(M, k) * C(N-M, n-k)) / C(N, n) (k = 0, 1,..., min(M, n)) E(X) = (nM)/N Var(X) = (nM(N-M)(N-n))/(N^2(N-1))

02 常见的连续型分布包括以下几种:

均匀分布

  • 概率密度函数
  • 期望
  • 方差

正态分布

  • 概率密度函数
  • 期望:E(X)=μ
  • 方差: Var(X)=σ^2
  • 标准化公式为:
  • 表示方法:N(μ,σ^2)

指数分布

  • 概率密度函数: f(x)=λexp(−λx) ,其中 x≥0
  • 期望: E(X)=1/λ
  • 方差 : Var(X)=1/λ^2

伽马分布

  • 概率密度函数
  • 期望:E(X)=α/λ
  • 方差: Var(X)=α/λ^2

贝塔分布

  • 概率密度函数
  • 期望: E(X)=a/(a+b)
  • 方差

卡方分布

  • 概率密度函数
  • 期望: E(X)=k
  • 方差: Var(X)=2k
  1. 柯西分布
    • 概率密度函数
    • 期望:不存在
    • 方差:不存在

对数正态分布

  • 概率密度函数
  • 期望
  • 方差

韦布尔分布

  • 概率密度函数
  • 期望
  • 方差
分布名称 概率密度函数 表示方法 期望 方差
正态分布 N(μ,σ^2) μ
均匀分布 U(a,b)
指数分布 Exp(λ)
伽玛分布 Γ(r,λ)
贝塔分布 B(α,β)
对数正态分布 LN(μ,σ^2)
韦布尔分布 W(k,λ)
相关推荐
nuise_1 天前
朴素贝叶斯法
人工智能·机器学习·概率论
亲持红叶2 天前
最优化方法-牛顿法
人工智能·线性代数·机器学习·概率论
梦醒沉醉4 天前
机器学习的数学基础(三)——概率与信息论
概率论·信息论
wyg_0311137 天前
用大模型学大模型03-数学基础 概率论 条件概率 全概率公式 贝叶斯定理
人工智能·概率论
wyg_0311138 天前
用大模型学大模型03-数学基础 概率论 随机变量 概率分布
人工智能·概率论
liruiqiang059 天前
机器学习 - 大数定律、可能近似正确学习理论
人工智能·机器学习·概率论
zs1996_9 天前
概率论、组合数学知识点汇总
概率论
@心都10 天前
机器学习数学基础:21.特征值与特征向量
人工智能·机器学习·概率论
@心都10 天前
机器学习数学基础:22.对称矩阵的对角化
机器学习·矩阵·概率论
CS创新实验室10 天前
《机器学习数学基础》补充资料:柯西—施瓦茨不等式以及相关证明
人工智能·机器学习·概率论