《自动驾驶与机器人中的SLAM技术》ch2:基础数学知识

目录

[2.1 几何学](#2.1 几何学)

向量的内积和外积

旋转矩阵

旋转向量

四元数

李群和李代数

[SO(3)上的 BCH 线性近似式](#SO(3)上的 BCH 线性近似式)

[2.2 运动学](#2.2 运动学)

李群视角下的运动学

[SO(3) + t 上的运动学](#SO(3) + t 上的运动学)

线速度和加速度

扰动模型和雅可比矩阵

典型算例:对向量进行旋转

典型算例:旋转的复合

[2.3 滤波器和最优化理论](#2.3 滤波器和最优化理论)

状态估计问题与最小二乘

[KF 卡尔曼滤波(线性系统)](#KF 卡尔曼滤波(线性系统))

[EKF 扩展卡尔曼 (非线性系统)](#EKF 扩展卡尔曼 (非线性系统))

最优化方法和图优化​编辑

优化和滤波


2.1 几何学

向量的内积和外积

旋转矩阵

旋转向量

四元数

三维旋转也可以由单位四元数 表示。注意:单位四元数的逆等于其共轭 。即 任意的旋转都可以由两个互为相反数的四元数表示。

旋转向量和四元数的转换关系如下:

李群和李代数

SO(3)上的 BCH 线性近似式

的括号里面只能是 ,或者 ,或者 。如果是 或者没有括号,表示省略。

2.2 运动学

李群视角下的运动学

SO(3) + t 上的运动学

其中 t 为平移向量。

线速度和加速度

注意:能被各种传感器(车速传感器,轮速计)测量到的速度是车体系速度,

线速度的变换式:

加速度的变换式:

在实际的处理中,由于测量传感器只能测量离散化的值,在精度不高的应用场景中,我们通常会选择忽略后面三项,只保留最简单的转换关系。

扰动模型和雅可比矩阵

典型算例:对向量进行旋转

设扰动 对应的李代数为

进行泰勒展开并保留一阶项:

右扰动:

左扰动:

典型算例:旋转的复合

的一阶线性近似式 (视觉SLAM十四讲,p82):

求导,对 进行右扰动:

其中第 3 行的 ,根据 的一阶线性近似式得:

求导,对 进行右扰动:

其中第 2 行的 ,根据 的一阶线性近似式得:

2.3 滤波器和最优化理论

状态估计问题与最小二乘

注意:这里的运动噪声为 ,观测噪声为 ,后续噪声的符号会变化,但表示的意义不变。

KF 卡尔曼滤波(线性系统)

EKF 扩展卡尔曼 (非线性系统)

矢量函数 点处进行线性化 。 在某一点 进行线性化的意思是:矢量函数 对状态 的雅可比矩阵,代入状态 的具体值。

为运动方程在上一时刻状态 进行线性化得到的雅可比矩阵,即运动方程对状态 的雅可比矩阵,代入上一时刻状态 的具体值:

为观测方程在当前时刻预测状态 进行线性化得到的雅可比矩阵,即观测方程对状态 的雅可比矩阵,代入当前时刻预测状态 的具体值:

这一块内容可以参考《机器人学中的状态估计》p89页,内容如下:

最优化方法和图优化

优化和滤波

相关推荐
你觉得2055 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
gaoshengdainzi6 小时前
镜片防雾性能测试仪在自动驾驶与无人机领域的创新应用
人工智能·自动驾驶·无人机·镜片防雾性能测试仪
向上的车轮7 小时前
NOA是什么?国内自动驾驶技术的现状是怎么样的?
人工智能·机器学习·自动驾驶
你觉得2058 小时前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法
大数据·人工智能·机器学习·ai·云计算·aigc·powerpoint
人工干智能9 小时前
科普:One-Class SVM和SVDD
人工智能·机器学习·支持向量机
MPCTHU9 小时前
预测分析(三):基于机器学习的分类预测
人工智能·机器学习·分类
_一条咸鱼_9 小时前
LangChain 入门到精通
机器学习
3DVisionary10 小时前
3D-DIC与机器学习协同模拟材料应力-应变本构行为研究
人工智能·机器学习·3d·3d-dic技术 机器学习·应力-应变本构行为·卷积神经网络(ecnn)·数字图像相关法(dic)
神经星星10 小时前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
神经星星10 小时前
【vLLM 学习】调试技巧
人工智能·机器学习·编程语言