《自动驾驶与机器人中的SLAM技术》ch2:基础数学知识

目录

[2.1 几何学](#2.1 几何学)

向量的内积和外积

旋转矩阵

旋转向量

四元数

李群和李代数

[SO(3)上的 BCH 线性近似式](#SO(3)上的 BCH 线性近似式)

[2.2 运动学](#2.2 运动学)

李群视角下的运动学

[SO(3) + t 上的运动学](#SO(3) + t 上的运动学)

线速度和加速度

扰动模型和雅可比矩阵

典型算例:对向量进行旋转

典型算例:旋转的复合

[2.3 滤波器和最优化理论](#2.3 滤波器和最优化理论)

状态估计问题与最小二乘

[KF 卡尔曼滤波(线性系统)](#KF 卡尔曼滤波(线性系统))

[EKF 扩展卡尔曼 (非线性系统)](#EKF 扩展卡尔曼 (非线性系统))

最优化方法和图优化​编辑

优化和滤波


2.1 几何学

向量的内积和外积

旋转矩阵

旋转向量

四元数

三维旋转也可以由单位四元数 表示。注意:单位四元数的逆等于其共轭 。即 任意的旋转都可以由两个互为相反数的四元数表示。

旋转向量和四元数的转换关系如下:

李群和李代数

SO(3)上的 BCH 线性近似式

的括号里面只能是 ,或者 ,或者 。如果是 或者没有括号,表示省略。

2.2 运动学

李群视角下的运动学

SO(3) + t 上的运动学

其中 t 为平移向量。

线速度和加速度

注意:能被各种传感器(车速传感器,轮速计)测量到的速度是车体系速度,

线速度的变换式:

加速度的变换式:

在实际的处理中,由于测量传感器只能测量离散化的值,在精度不高的应用场景中,我们通常会选择忽略后面三项,只保留最简单的转换关系。

扰动模型和雅可比矩阵

典型算例:对向量进行旋转

设扰动 对应的李代数为

进行泰勒展开并保留一阶项:

右扰动:

左扰动:

典型算例:旋转的复合

的一阶线性近似式 (视觉SLAM十四讲,p82):

求导,对 进行右扰动:

其中第 3 行的 ,根据 的一阶线性近似式得:

求导,对 进行右扰动:

其中第 2 行的 ,根据 的一阶线性近似式得:

2.3 滤波器和最优化理论

状态估计问题与最小二乘

注意:这里的运动噪声为 ,观测噪声为 ,后续噪声的符号会变化,但表示的意义不变。

KF 卡尔曼滤波(线性系统)

EKF 扩展卡尔曼 (非线性系统)

矢量函数 点处进行线性化 。 在某一点 进行线性化的意思是:矢量函数 对状态 的雅可比矩阵,代入状态 的具体值。

为运动方程在上一时刻状态 进行线性化得到的雅可比矩阵,即运动方程对状态 的雅可比矩阵,代入上一时刻状态 的具体值:

为观测方程在当前时刻预测状态 进行线性化得到的雅可比矩阵,即观测方程对状态 的雅可比矩阵,代入当前时刻预测状态 的具体值:

这一块内容可以参考《机器人学中的状态估计》p89页,内容如下:

最优化方法和图优化

优化和滤波

相关推荐
WWZZ20258 小时前
快速上手大模型:机器学习3(多元线性回归及梯度、向量化、正规方程)
人工智能·算法·机器学习·机器人·slam·具身感知
晓枫-迷麟11 小时前
【文献阅读】当代MOF与机器学习
人工智能·机器学习
sensen_kiss11 小时前
INT301 Bio-computation 生物计算(神经网络)Pt.3 梯度下降与Sigmoid激活函数
人工智能·神经网络·机器学习
Shilong Wang11 小时前
MLE, MAP, Full Bayes
人工智能·算法·机器学习
Theodore_102211 小时前
机器学习(6)特征工程与多项式回归
深度学习·算法·机器学习·数据分析·多项式回归
Blossom.11812 小时前
把AI“刻”进玻璃:基于飞秒激光量子缺陷的随机数生成器与边缘安全实战
人工智能·python·单片机·深度学习·神经网络·安全·机器学习
Aurora-silas13 小时前
LLM微调尝试——MAC版
人工智能·pytorch·深度学习·macos·机器学习·语言模型·自然语言处理
lihongli00014 小时前
ros中的Navigation导航系统
自动驾驶·ros
康谋自动驾驶14 小时前
拆解3D Gaussian Splatting:原理框架、实战 demo 与自驾仿真落地探索!
算法·数学建模·3d·自动驾驶·汽车
酌量15 小时前
基于3D激光点云的障碍物检测与跟踪---(1)体素下采样、ROI 区域裁剪与地面点云分割
笔记·机器人·ransac·障碍物检测·激光点云·roi·体素下采样