机器学习笔记合集

大家好,这里是好评笔记,公主 号:Goodnote。本笔记的任务是解读机器学习实践/面试过程中可能会用到的知识点,内容通俗易懂,入门、实习和校招轻松搞定。

笔记介绍

本笔记的任务是解读机器学习实践/面试过程中可能会用到的知识点,内容通俗易懂,入门、实习和校招轻松搞定。涵盖机器学习八股文和常用算法,包括机器学习基础知识、感知机(Perceptron)、多层感知机(MLP, Multi-Layer Perceptron)、支持向量机(SVM, Support Vector Machine)、K 最近邻(KNN, K-Nearest Neighbors)、朴素贝叶斯(Naive Bayes)、决策树(Decision Tree)、随机森林(Random Forest)、Bagging、Boosting、GBDT、XGBoost、LightGBM、K 均值聚类(K-means Clustering)、高斯混合模型(GMM)、降维算法等。

其他

本笔记基本更新完毕,会不定期更新一些补充内容。欢迎大家订阅,公 主 号回复"专栏试读"或点击菜单栏的"专栏试读"私信我,任选2篇免费试读。

合集目录

本系列其他相关笔记参考如下:

  1. 🔥免费试读🔥机器学习笔记------损失函数、代价函数和KL散度
  2. 🔥免费试读🔥机器学习笔记------特征工程、正则化、强化学习
  3. 机器学习笔记------30种常见机器学习算法简要汇总
  4. 机器学习笔记------感知机、多层感知机(MLP)、支持向量机(SVM)
  5. 机器学习笔记------KNN(K-Nearest Neighbors,K 近邻算法)
  6. 机器学习笔记------朴素贝叶斯算法
  7. 机器学习笔记------决策树
  8. 机器学习笔记------集成学习、Bagging(随机森林)、Boosting(AdaBoost、GBDT、XGBoost、LightGBM)、Stacking
  9. 机器学习笔记------Boosting中常用算法(GBDT、XGBoost、LightGBM)迭代路径
  10. 机器学习笔记------聚类算法(Kmeans、GMM-使用EM优化)
  11. 机器学习笔记------降维

公主号合集地址

机器学习笔记合集

相关推荐
天上的光1 小时前
17.迁移学习
人工智能·机器学习·迁移学习
后台开发者Ethan1 小时前
Python需要了解的一些知识
开发语言·人工智能·python
猫头虎1 小时前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农1 小时前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农2 小时前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络
数据智能老司机2 小时前
面向企业的图学习扩展——图简介
人工智能·机器学习·ai编程
盼小辉丶2 小时前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型
mit6.8242 小时前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫2 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域3 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序