Re78 读论文:GPT-4 Technical Report

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文全名:GPT-4 Technical Report

官方博客:GPT-4 | OpenAI

appendix懒得看了。

文章目录

  • [1. 模型训练过程心得](#1. 模型训练过程心得)
  • [2. scaling law](#2. scaling law)
  • [3. 实验结果](#3. 实验结果)

1. 模型训练过程心得

模型结构还是Transformers,训练目标还是语言模型(预测下一个token),我写过GPT-1/2/3的博文了直接看之前的博文吧。

增加了后训练对齐过程/用Reinforcement Learning from Human Feedback (RLHF)微调,提升模型回答的真实性,使其更符合人类偏好。

训练过程验证了scaling law,也就是有效的架构和优化方案在小模型上跑过之后,它们在大尺度模型上的效果提升是可预期的,这样只需在小模型上验证方案,就可以在大模型上放心去做了。

GPT-4仍然具有如下缺点(这也是现在很多大模型工作在致力于干掉的):幻觉,上下文长度限制,训练后就无法更新知识(does not learn from experience),偏见

GPT-4模型可以根据用户偏好实现一定程度的定制化。

针对风险的解决方案:

  1. safety-relevant RLHF training prompts
  2. rule-based reward models (RBRMs):若干GPT-4零样本分类器,输入是prompt、模型回复和人工评估的标准,输出是这个问答对是否安全

更多安全问题可以看System Card。

2. scaling law

  1. 损失函数与计算量遵循幂函数,高度可预测
  2. 指标也是
  3. 但也有例外:

3. 实验结果

对于数据污染情况,又做了一个把测试集中泄露数据去掉的新数据集,报告两个测试集上比较差的结果。

考试:

标准LM benchmark:

在用户偏好方面,相比GPT-3.5,人工标注者对GPT-4的回答打分更高。

GPT-4的跨语言能力:

多模态示例:

遵从事实的能力得到了提升:

上图任务所用的数据示例:

后训练(PPO)影响calibration(评估模型对可能性高的答案给出更高的置信度的能力):

减少风险

找了专家来进行对抗式提问

示例:

改进误杀的示例:

安全性提升效果:

相关推荐
Blossom.1182 小时前
强化学习推荐系统实战:从DQN到PPO的演进与落地
人工智能·python·深度学习·算法·机器学习·chatgpt·自动化
shayudiandian2 小时前
AI写作助手测评大会
人工智能·chatgpt·ai写作
irises2 小时前
开源项目next-ai-draw-io核心能力拆解
前端·后端·llm
irises2 小时前
通过`ai.js`与`@ai-sdk`实现前后端tool注入与交互
前端·后端·llm
CC羊39123 小时前
生图绘图旗舰模型评测:Nano banana Pro、GPT Image 1.5与Seedream 4.5在架构、画质与一致性上的核心差异与选型建议
aigc·openai
課代表3 小时前
大语言模型能够理解的11种文件格式
人工智能·语言模型·自然语言处理·llm·markdown·token·模型
程序员佳佳4 小时前
【万字硬核】从GPT-5.2到Sora2:深度解构多模态大模型的“物理直觉”与Python全栈落地指南(内含Banana2实测)
开发语言·python·gpt·chatgpt·ai作画·aigc·api
智泊AI12 小时前
一文讲清:主流大模型推理部署框架:vLLM、SGLang、TensorRT-LLM、ollama、XInference
llm
一只叫煤球的猫13 小时前
2025年终总结:我与AI——减少内耗、疯狂学习、享受乐趣
aigc·openai·ai编程
大霸王龙15 小时前
MinIO 对象存储系统架构图集
人工智能·llm·minio