Re78 读论文:GPT-4 Technical Report

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文全名:GPT-4 Technical Report

官方博客:GPT-4 | OpenAI

appendix懒得看了。

文章目录

  • [1. 模型训练过程心得](#1. 模型训练过程心得)
  • [2. scaling law](#2. scaling law)
  • [3. 实验结果](#3. 实验结果)

1. 模型训练过程心得

模型结构还是Transformers,训练目标还是语言模型(预测下一个token),我写过GPT-1/2/3的博文了直接看之前的博文吧。

增加了后训练对齐过程/用Reinforcement Learning from Human Feedback (RLHF)微调,提升模型回答的真实性,使其更符合人类偏好。

训练过程验证了scaling law,也就是有效的架构和优化方案在小模型上跑过之后,它们在大尺度模型上的效果提升是可预期的,这样只需在小模型上验证方案,就可以在大模型上放心去做了。

GPT-4仍然具有如下缺点(这也是现在很多大模型工作在致力于干掉的):幻觉,上下文长度限制,训练后就无法更新知识(does not learn from experience),偏见

GPT-4模型可以根据用户偏好实现一定程度的定制化。

针对风险的解决方案:

  1. safety-relevant RLHF training prompts
  2. rule-based reward models (RBRMs):若干GPT-4零样本分类器,输入是prompt、模型回复和人工评估的标准,输出是这个问答对是否安全

更多安全问题可以看System Card。

2. scaling law

  1. 损失函数与计算量遵循幂函数,高度可预测
  2. 指标也是
  3. 但也有例外:

3. 实验结果

对于数据污染情况,又做了一个把测试集中泄露数据去掉的新数据集,报告两个测试集上比较差的结果。

考试:

标准LM benchmark:

在用户偏好方面,相比GPT-3.5,人工标注者对GPT-4的回答打分更高。

GPT-4的跨语言能力:

多模态示例:

遵从事实的能力得到了提升:

上图任务所用的数据示例:

后训练(PPO)影响calibration(评估模型对可能性高的答案给出更高的置信度的能力):

减少风险

找了专家来进行对抗式提问

示例:

改进误杀的示例:

安全性提升效果:

相关推荐
yaocheng的ai分身8 小时前
ChatGPT 负责人谈情感依赖、广告和未来
chatgpt
亚里随笔9 小时前
稳定且高效:GSPO如何革新大型语言模型的强化学习训练?
人工智能·机器学习·语言模型·自然语言处理·llm·rlhf
狠活科技10 小时前
平替 Claude Code,API接入 GPT-5,Codex CLI 国内直接使用教程
chatgpt·ai编程·oneapi
SuperherRo12 小时前
Web攻防-大模型应用&LLM安全&提示词注入&不安全输出&代码注入&直接间接&数据投毒
大模型·llm·提示词注入·不安全输出·直接·间接
堆栈future15 小时前
LangGraph实践-构建AI工作流:创建一本大模型应用开发书籍
langchain·llm·aigc
大志说编程16 小时前
LangChain框架入门15:深度解析Retrievers检索器组件
python·langchain·llm
AI大模型17 小时前
基于 Ollama 本地 LLM 大语言模型实现 ChatGPT AI 聊天系统
程序员·llm·ollama
AI大模型17 小时前
AI大模型选择指南:从ChatGPT到国产新秀,一文看懂如何选对你的AI助手
gpt·程序员·llm
努力还债的学术吗喽19 小时前
2020 GPT3 原文 Language Models are Few-Shot Learners 精选注解
gpt·大模型·llm·gpt-3·大语言模型·few-shot·zero-shot
龍小南21 小时前
RAG第2章:向量数据库(理论和常见数据库)
llm