递归练习三(决策树)

一、解题心得

当我们需要暴力搜索全部的解时可以考虑用递归,解决方法就是画出决策树,由于二叉树的性质可以知道二叉树的分支代表两种情况,此时如果画出所有情况就是画出了决策树,又由于树的遍历用的是递归,所以就可以遍历决策树来添加出所有的解。

二、例题

1、全排列

46. 全排列 - 力扣(LeetCode)

分析

全排列可以有两种方法

(1)按位解决

顾名思义就是分析每一位上是什么数字。要求就是前面出现的数字在这一位上不能再出现。按位解决可以画出决策树:

(2)按层解决

规定第 n 层只能有 n 个数字

n 数的全排列就是在 n - 1 数全排列的基础上,把第 n 个数插入到每一个 n - 1 数全排列数组的 n 个位置

举例:[1, 2, 3]

1

12 21

312 231 123 321 231 213

代码

(1)按位解决

(2)按层解决

2、子集

78. 子集 - 力扣(LeetCode)

分析

有三种解决办法,两种决策树,一种按层解决

(1)决策树1

子集与全排列的区别就是全排列每一位必须选,子集每一位可以选可以不选。

由此第一种决策树结果出现在叶子节点。

决策树:

(2)决策树2

递归到数 i 的时候,i 以及 i 之后的值也是可以加入到之前存好的路径的,所以每一次的加入都是一个新的结果。

决策树:

(3)按层解决

规定第 n 层只能有 n 个数字

为了保证每层添加数字时不重不漏,只会添加比前一个数大的数,即子集都是升序。

举例:[1, 2, 3]

1 2 3

12 13 23

123 空

代码

(1)决策树1

(2)决策树2

(3)按层解决

三、总结

用决策树解决问题时一般结果在根到叶子的路径上,叶子节点或就是递归的每一次。

所以有很多时候都是要用到全局变量 tmp 来记录每一层递归的路径,当然只要在本层修改路径,回溯时就一定要把路径还原,这样才能让下一次递归有正确的路径。

相关推荐
Matlab程序猿小助手18 分钟前
【MATLAB源码-第303期】基于matlab的蒲公英优化算法(DO)机器人栅格路径规划,输出做短路径图和适应度曲线.
开发语言·算法·matlab·机器人·kmeans
CoderIsArt25 分钟前
CORDIC三角计算技术
人工智能·算法·机器学习
立志成为大牛的小牛25 分钟前
数据结构——二十九、图的广度优先遍历(BFS)(王道408)
数据结构·数据库·学习·程序人生·考研·算法·宽度优先
Alex艾力的IT数字空间27 分钟前
基于PyTorch和CuPy的GPU并行化遗传算法实现
数据结构·人工智能·pytorch·python·深度学习·算法·机器学习
仰泳的熊猫38 分钟前
LeetCode:51. N 皇后
数据结构·c++·算法·leetcode
独自破碎E40 分钟前
LeetCode 381: O(1) 时间插入、删除和获取随机元素 - 允许重复
java·算法·leetcode
Miraitowa_cheems1 小时前
LeetCode算法日记 - Day 81: 最大子数组和
java·数据结构·算法·leetcode·决策树·职场和发展·深度优先
冯诺依曼的锦鲤1 小时前
算法练习:前缀和专题
开发语言·c++·算法
闭着眼睛学算法2 小时前
【双机位A卷】华为OD笔试之【哈希表】双机位A-跳房子I【Py/Java/C++/C/JS/Go六种语言】【欧弟算法】全网注释最详细分类最全的华子OD真题题解
java·c语言·c++·python·算法·华为od·散列表
自信150413057592 小时前
初学者小白复盘15之指针(4)
c语言·数据结构·算法