递归练习三(决策树)

一、解题心得

当我们需要暴力搜索全部的解时可以考虑用递归,解决方法就是画出决策树,由于二叉树的性质可以知道二叉树的分支代表两种情况,此时如果画出所有情况就是画出了决策树,又由于树的遍历用的是递归,所以就可以遍历决策树来添加出所有的解。

二、例题

1、全排列

46. 全排列 - 力扣(LeetCode)

分析

全排列可以有两种方法

(1)按位解决

顾名思义就是分析每一位上是什么数字。要求就是前面出现的数字在这一位上不能再出现。按位解决可以画出决策树:

(2)按层解决

规定第 n 层只能有 n 个数字

n 数的全排列就是在 n - 1 数全排列的基础上,把第 n 个数插入到每一个 n - 1 数全排列数组的 n 个位置

举例:[1, 2, 3]

1

12 21

312 231 123 321 231 213

代码

(1)按位解决

(2)按层解决

2、子集

78. 子集 - 力扣(LeetCode)

分析

有三种解决办法,两种决策树,一种按层解决

(1)决策树1

子集与全排列的区别就是全排列每一位必须选,子集每一位可以选可以不选。

由此第一种决策树结果出现在叶子节点。

决策树:

(2)决策树2

递归到数 i 的时候,i 以及 i 之后的值也是可以加入到之前存好的路径的,所以每一次的加入都是一个新的结果。

决策树:

(3)按层解决

规定第 n 层只能有 n 个数字

为了保证每层添加数字时不重不漏,只会添加比前一个数大的数,即子集都是升序。

举例:[1, 2, 3]

1 2 3

12 13 23

123 空

代码

(1)决策树1

(2)决策树2

(3)按层解决

三、总结

用决策树解决问题时一般结果在根到叶子的路径上,叶子节点或就是递归的每一次。

所以有很多时候都是要用到全局变量 tmp 来记录每一层递归的路径,当然只要在本层修改路径,回溯时就一定要把路径还原,这样才能让下一次递归有正确的路径。

相关推荐
如竟没有火炬6 分钟前
全排列——交换的思想
开发语言·数据结构·python·算法·leetcode·深度优先
寂静山林19 分钟前
UVa 12526 Cellphone Typing
算法
kyle~1 小时前
C++---嵌套类型(Nested Types)封装与泛型的基石
开发语言·c++·算法
sali-tec1 小时前
C# 基于halcon的视觉工作流-章48-短路断路
开发语言·图像处理·人工智能·算法·计算机视觉
墨染点香2 小时前
LeetCode 刷题【128. 最长连续序列】
算法·leetcode·职场和发展
被AI抢饭碗的人2 小时前
算法题(240):最大食物链计数
算法
熬了夜的程序员2 小时前
【LeetCode】82. 删除排序链表中的重复元素 II
数据结构·算法·leetcode·链表·职场和发展·矩阵·深度优先
欧克小奥2 小时前
Floyd判圈算法(Floyd Cycle Detection Algorithm)
算法·floyd
熬了夜的程序员3 小时前
【LeetCode】83. 删除排序链表中的重复元素
算法·leetcode·链表
胖咕噜的稞达鸭3 小时前
AVL树手撕,超详细图文详解
c语言·开发语言·数据结构·c++·算法·visual studio