0基础跟德姆(dom)一起学AI 自然语言处理19-输出部分实现

1 输出部分介绍

  • 输出部分包含:
    • 线性层
    • softmax层

2 线性层的作用

  • 通过对上一步的线性变化得到指定维度的输出, 也就是转换维度的作用.

3 softmax层的作用

  • 使最后一维的向量中的数字缩放到0-1的概率值域内, 并满足他们的和为1.

3.1 线性层和softmax层的代码分析

复制代码
# 解码器类 Generator 实现思路分析
# init函数 (self, d_model, vocab_size)
    # 定义线性层self.project
# forward函数 (self, x)
    # 数据 F.log_softmax(self.project(x), dim=-1)

class Generator(nn.Module):
    def __init__(self, d_model, vocab_size):
        # 参数d_model 线性层输入特征尺寸大小
        # 参数vocab_size 线层输出尺寸大小
        super(Generator, self).__init__()
        # 定义线性层
        self.project = nn.Linear(d_model, vocab_size)

    def forward(self, x):
        # 数据经过线性层 最后一个维度归一化 log方式
        x = F.log_softmax(self.project(x), dim=-1)
        return x
  • nn.Linear演示:

    m = nn.Linear(20, 30)
    input = torch.randn(128, 20)
    output = m(input)
    print(output.size())
    torch.Size([128, 30])

  • 函数调用
复制代码
if __name__ == '__main__':

    # 实例化output层对象
    d_model = 512
    vocab_size = 1000
    my_generator = Generator(d_model, vocab_size )

    # 准备模型数据
    x = torch.randn(2, 4, 512)

    # 数据经过out层
    gen_result = my_generator(x)
    print('gen_result--->', gen_result.shape, '\n', gen_result)
  • 输出效果
复制代码
gen_result---> torch.Size([2, 4, 1000]) 
 tensor([[[-6.5949, -7.0295, -6.5928,  ..., -7.4317, -7.5488, -6.4871],
         [-7.0481, -6.2352, -7.2797,  ..., -6.1491, -6.1621, -7.1798],
         [-8.1724, -7.0675, -8.2814,  ..., -6.0033, -7.1100, -7.6844],
         [-6.2466, -6.6074, -6.1852,  ..., -6.8373, -7.6600, -6.8578]],

        [[-7.7598, -7.4174, -6.2134,  ..., -7.8000, -6.9862, -6.9261],
         [-6.4790, -7.5458, -6.2342,  ..., -6.8340, -6.6827, -7.0287],
         [-7.2524, -7.2598, -7.0600,  ..., -7.5680, -6.9492, -6.7689],
         [-6.6260, -6.1928, -6.7045,  ..., -6.6323, -7.9005, -7.5397]]],
       grad_fn=<LogSoftmaxBackward0>)
相关推荐
落羽凉笙17 小时前
Python学习笔记(3)|数据类型、变量与运算符:夯实基础,从入门到避坑(附图解+代码)
笔记·python·学习
Light6017 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升17 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
天远Date Lab17 小时前
Python实战:对接天远数据手机号码归属地API,实现精准用户分群与本地化运营
大数据·开发语言·python
natide17 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农17 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews18 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
哈里谢顿18 小时前
Python异常链:谁才是罪魁祸首?一探"The above exception"的时间顺序
python
脑极体18 小时前
机器人的罪与罚
人工智能·机器人
三不原则18 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes