神经网络|(四)概率论基础知识-古典概型

【1】引言

前序学习了线性回归的基础知识,了解到最小二乘法可以做线性回归分析,但为何最小二乘法如此准确,这需要从概率论的角度给出依据。

因此从本文起,需要花一段时间来回顾概率论的基础知识。

【2】古典概型

古典概型是我们最熟悉的概率模型,简而言之就是有限个元素参与抽样,每个元素被抽样的概率相等。

古典概型有个点需要注意:

1.每个变量的概率相同,p{xi}=p{xj}=k;

2.放回抽样和不放回抽样的概率相等。

推导:

假设有m个红球,n个黄球,d个人抽取球,每人抽一个球,问第i(i=1,2,...k)个人抽到黄球的概率是多少,记抽样后放回的情况为A1,记抽样后不放回的情况为A2,则有:

(1)对于A1,因为抽样后放回,每次抽取又回到起始点,所以每个人抽取到黄球的概率都是:

(2)对于A2,因为抽样后不放回,每次抽取的基数不一致,所以:

第一个人抽样的时候,由(m+n)种情况;第二个人抽样的时候,由(m+n-1)种情况...第d个人抽样的时候,由(m+n-d+1)种情况,所有抽取到情况数应该是(m+n)(m+n-1)...(m+n-d+1),可以记作

当第i个人抽取到黄球,相当于在n个黄球中取到一个,有n种可能,此处记作,此时其他人的抽样情况数转化为:(m+n-1)(m+n-2)...(m+n-(d-1) +1),可以记作,所以,此时第i 个人抽取到情况数应该是:

由此可见,p(A1)=p(A2)。

实际上有另一种快速理解的办法:当第i 个人抽取到黄球,其他人就是在m+n-1个球当中抽d-1个球,这时候的总情况数就是,由于第i 个人抽取到黄球的也有n种情况,所以有p(A2)的计算式。

【3】总结

回顾了古典概型的知识。

相关推荐
说私域23 分钟前
“开源AI大模型AI智能名片S2B2C商城小程序”视角下的教育用户策略研究
人工智能·小程序
gddkxc1 小时前
AI CRM中的数据分析:悟空AI CRM如何帮助企业优化运营
人工智能·信息可视化·数据分析
AI视觉网奇1 小时前
Python 检测运动模糊 源代码
人工智能·opencv·计算机视觉
东隆科技1 小时前
PRIMES推出SFM 2D全扫描场分析仪革新航空航天LPBF激光增材制造
人工智能·制造
无风听海1 小时前
神经网络之计算图repeat节点
人工智能·深度学习·神经网络
刘晓倩1 小时前
在PyCharm中创建项目并练习
人工智能
Dev7z2 小时前
阿尔茨海默病早期症状影像分类数据集
人工智能·分类·数据挖掘
神码小Z2 小时前
DeepSeek再开源3B-MoE-OCR模型,视觉压缩高达20倍,支持复杂图表解析等多模态能力!
人工智能
maxruan2 小时前
PyTorch学习
人工智能·pytorch·python·学习
吃饭睡觉发paper2 小时前
Learning Depth Estimation for Transparent and Mirror Surfaces
人工智能·机器学习·计算机视觉