神经网络|(四)概率论基础知识-古典概型

【1】引言

前序学习了线性回归的基础知识,了解到最小二乘法可以做线性回归分析,但为何最小二乘法如此准确,这需要从概率论的角度给出依据。

因此从本文起,需要花一段时间来回顾概率论的基础知识。

【2】古典概型

古典概型是我们最熟悉的概率模型,简而言之就是有限个元素参与抽样,每个元素被抽样的概率相等。

古典概型有个点需要注意:

1.每个变量的概率相同,p{xi}=p{xj}=k;

2.放回抽样和不放回抽样的概率相等。

推导:

假设有m个红球,n个黄球,d个人抽取球,每人抽一个球,问第i(i=1,2,...k)个人抽到黄球的概率是多少,记抽样后放回的情况为A1,记抽样后不放回的情况为A2,则有:

(1)对于A1,因为抽样后放回,每次抽取又回到起始点,所以每个人抽取到黄球的概率都是:

(2)对于A2,因为抽样后不放回,每次抽取的基数不一致,所以:

第一个人抽样的时候,由(m+n)种情况;第二个人抽样的时候,由(m+n-1)种情况...第d个人抽样的时候,由(m+n-d+1)种情况,所有抽取到情况数应该是(m+n)(m+n-1)...(m+n-d+1),可以记作

当第i个人抽取到黄球,相当于在n个黄球中取到一个,有n种可能,此处记作,此时其他人的抽样情况数转化为:(m+n-1)(m+n-2)...(m+n-(d-1) +1),可以记作,所以,此时第i 个人抽取到情况数应该是:

由此可见,p(A1)=p(A2)。

实际上有另一种快速理解的办法:当第i 个人抽取到黄球,其他人就是在m+n-1个球当中抽d-1个球,这时候的总情况数就是,由于第i 个人抽取到黄球的也有n种情况,所以有p(A2)的计算式。

【3】总结

回顾了古典概型的知识。

相关推荐
九年义务漏网鲨鱼1 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间1 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享1 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾2 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码2 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5892 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
nananaij2 小时前
【Python进阶篇 面向对象程序设计(3) 继承】
开发语言·python·神经网络·pycharm
雷羿 LexChien2 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松3 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_13 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf