神经网络|(四)概率论基础知识-古典概型

【1】引言

前序学习了线性回归的基础知识,了解到最小二乘法可以做线性回归分析,但为何最小二乘法如此准确,这需要从概率论的角度给出依据。

因此从本文起,需要花一段时间来回顾概率论的基础知识。

【2】古典概型

古典概型是我们最熟悉的概率模型,简而言之就是有限个元素参与抽样,每个元素被抽样的概率相等。

古典概型有个点需要注意:

1.每个变量的概率相同,p{xi}=p{xj}=k;

2.放回抽样和不放回抽样的概率相等。

推导:

假设有m个红球,n个黄球,d个人抽取球,每人抽一个球,问第i(i=1,2,...k)个人抽到黄球的概率是多少,记抽样后放回的情况为A1,记抽样后不放回的情况为A2,则有:

(1)对于A1,因为抽样后放回,每次抽取又回到起始点,所以每个人抽取到黄球的概率都是:

(2)对于A2,因为抽样后不放回,每次抽取的基数不一致,所以:

第一个人抽样的时候,由(m+n)种情况;第二个人抽样的时候,由(m+n-1)种情况...第d个人抽样的时候,由(m+n-d+1)种情况,所有抽取到情况数应该是(m+n)(m+n-1)...(m+n-d+1),可以记作

当第i个人抽取到黄球,相当于在n个黄球中取到一个,有n种可能,此处记作,此时其他人的抽样情况数转化为:(m+n-1)(m+n-2)...(m+n-(d-1) +1),可以记作,所以,此时第i 个人抽取到情况数应该是:

由此可见,p(A1)=p(A2)。

实际上有另一种快速理解的办法:当第i 个人抽取到黄球,其他人就是在m+n-1个球当中抽d-1个球,这时候的总情况数就是,由于第i 个人抽取到黄球的也有n种情况,所以有p(A2)的计算式。

【3】总结

回顾了古典概型的知识。

相关推荐
VR最前沿7 分钟前
全新Xsens Animate版本是迄今为止最大的软件升级,提供更清晰的数据、快捷的工作流程以及从录制开始就更直观的体验
人工智能·科技·机器人·自动化
禺垣11 分钟前
知识图谱技术概述
大数据·人工智能·深度学习·知识图谱
zhongqu_3dnest14 分钟前
众趣科技与我爱我家达成战略合作:AI空间计算技术赋能重塑房产服务新范式
人工智能·科技·三维建模·空间计算·vr看房·房产经纪
我就是全世界19 分钟前
2025主流智能体Agent终极指南:Manus、OpenManus、MetaGPT、AutoGPT与CrewAI深度横评
人工智能·python·机器学习
MYH51621 分钟前
类Transformer架构
人工智能
谢耳朵(wer~wer~)27 分钟前
机器学习复习3--模型评估
人工智能·机器学习
king of code porter29 分钟前
深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(1)
人工智能·深度学习·剪枝
普通老人1 小时前
【人工智能】一些基本概念
人工智能
后端小肥肠1 小时前
Coze实战:一分钟生成10w+独居女孩Vlog动画,零基础也能日更!
人工智能·aigc·coze
Blossom.1181 小时前
使用Python和OpenCV实现图像识别与目标检测
人工智能·python·神经网络·opencv·安全·目标检测·机器学习