代码随想录算法【Day34】

Day34

62.不同路径

思路

第一种:深搜 -> 超时

第二种:动态规划

第三种:数论

动态规划代码如下:

复制代码
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i = 0; i < m; i++) dp[i][0] = 1;
        for (int j = 0; j < n; j++) dp[0][j] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};

五部曲

1.dp数组及下标定义:二维dp数组dp[i][j]表示从(0,0)出发,到(i,j)有dp[i][j]条不同的路径

2.递推公式:dp[i][j] = dp[i - 1][j] + dp[i][j - 1],即当前格子的值等于上面的格子和左边的格子的值的总和

3.初始化:将第一行和第一列初始为1

4.遍历顺序:从左到右一层一层往下遍历

5.数组的数据应该是怎样的:

63. 不同路径 II

思路

有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。

复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
            return 0;
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 1) continue;
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};

五部曲

和上一题是一样的

相关推荐
FogLetter4 分钟前
微信红包算法揭秘:从随机性到产品思维的完美结合
算法
YGGP24 分钟前
吃透 Golang 基础:数据结构之 Map
开发语言·数据结构·golang
BUG收容所所长30 分钟前
二分查找的「左右为难」:如何优雅地找到数组中元素的首尾位置
前端·javascript·算法
weixin_419658311 小时前
数据结构之栈
数据结构
图先1 小时前
数据结构第一章
数据结构
itsuifengerxing1 小时前
python 自定义无符号右移
算法
猎板PCB厚铜专家大族2 小时前
高频 PCB 技术发展趋势与应用解析
人工智能·算法·设计规范
dying_man2 小时前
LeetCode--24.两两交换链表中的结点
算法·leetcode
yours_Gabriel2 小时前
【力扣】2434.使用机器人打印字典序最小的字符串
算法·leetcode·贪心算法
草莓熊Lotso3 小时前
【数据结构初阶】--算法复杂度的深度解析
c语言·开发语言·数据结构·经验分享·笔记·其他·算法