代码随想录算法【Day34】

Day34

62.不同路径

思路

第一种:深搜 -> 超时

第二种:动态规划

第三种:数论

动态规划代码如下:

复制代码
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i = 0; i < m; i++) dp[i][0] = 1;
        for (int j = 0; j < n; j++) dp[0][j] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};

五部曲

1.dp数组及下标定义:二维dp数组dp[i][j]表示从(0,0)出发,到(i,j)有dp[i][j]条不同的路径

2.递推公式:dp[i][j] = dp[i - 1][j] + dp[i][j - 1],即当前格子的值等于上面的格子和左边的格子的值的总和

3.初始化:将第一行和第一列初始为1

4.遍历顺序:从左到右一层一层往下遍历

5.数组的数据应该是怎样的:

63. 不同路径 II

思路

有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。

复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
            return 0;
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 1) continue;
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};

五部曲

和上一题是一样的

相关推荐
利刃大大几秒前
【动态规划:路径问题】最小路径和 && 地下城游戏
算法·动态规划·cpp·路径问题
武大打工仔17 分钟前
用 Java 复现哲学家就餐问题
算法
要做朋鱼燕18 分钟前
【数据结构】用堆解决TOPK问题
数据结构·算法
秋难降1 小时前
LRU缓存算法(最近最少使用算法)——工业界缓存淘汰策略的 “默认选择”
数据结构·python·算法
tkevinjd1 小时前
图论\dp 两题
leetcode·动态规划·图论
CoovallyAIHub3 小时前
线性复杂度破局!Swin Transformer 移位窗口颠覆高分辨率视觉建模
深度学习·算法·计算机视觉
点云SLAM3 小时前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库
Jayyih3 小时前
嵌入式系统学习Day19(数据结构)
数据结构·学习
renhongxia13 小时前
大模型微调RAG、LORA、强化学习
人工智能·深度学习·算法·语言模型