pytorch实现文本摘要

人工智能例子汇总:AI常见的算法和例子-CSDN博客

复制代码
import numpy as np

from modelscope.hub.snapshot_download import snapshot_download
from transformers import BertTokenizer, BertModel
import torch

# 下载模型到本地目录
model_dir = snapshot_download('tiansz/bert-base-chinese', cache_dir='./bert-base-chinese')
print(f"模型已下载到: {model_dir}")

# 本地模型路径
model_path = model_dir  # 使用下载的模型路径

# 从本地加载分词器和模型
tokenizer = BertTokenizer.from_pretrained(model_path)
model = BertModel.from_pretrained(model_path)


def get_sentence_embeddings(text):
    """
    获取输入文本的句子级别嵌入(BERT模型的输出)用于摘要任务
    """
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        outputs = model(**inputs)
    # 获取最后一层的[CLS] token的嵌入向量作为句子的表示
    return outputs.pooler_output.detach().numpy()


def summarize(text, num_sentences=3):
    """
    使用抽取式摘要从输入文本中提取最重要的句子
    """
    sentences = text.split("。")  # 以句号分割句子
    sentence_embeddings = []

    for sentence in sentences:
        embedding = get_sentence_embeddings(sentence)
        sentence_embeddings.append(embedding)

    # 使用句子得分来排序
    sentence_scores = np.array([embedding[0][0] for embedding in sentence_embeddings])
    ranked_sentences = [sentences[i] for i in sentence_scores.argsort()[-num_sentences:][::-1]]

    # 返回排名靠前的句子
    return "。".join(ranked_sentences)


# 示例中文文本
text = """
机器学习(Machine Learning,简称 ML)是人工智能(AI)领域的一个分支,重点研究开发能够使计算机在没有明确编程指令的情况下进行任务的算法和统计模型。机器学习通过从数据中学习,识别模式,并根据少量人为干预做出决策。 
近年来,深度学习(Deep Learning)作为机器学习的一个子集,取得了显著的进展,尤其是在计算机视觉、自然语言处理和语音识别等领域。 
深度学习技术使用多层神经网络结构,能够通过处理大量的数据来自动提取特征,从而提高机器学习的性能。 
目前,人工智能已经在多个行业中得到广泛应用,包括医疗健康、金融、自动驾驶等领域。
"""

# 获取摘要
summary = summarize(text)
print("原文:\n", text)
print("\n摘要:\n", summary)

~困了🥱,通宵写了一个晚上

结果:

复制代码
Downloading Model to directory: ./bert-base-chinese/tiansz/bert-base-chinese
模型已下载到: ./bert-base-chinese/tiansz/bert-base-chinese
Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.
原文:
 
机器学习(Machine Learning,简称 ML)是人工智能(AI)领域的一个分支,重点研究开发能够使计算机在没有明确编程指令的情况下进行任务的算法和统计模型。机器学习通过从数据中学习,识别模式,并根据少量人为干预做出决策。 
近年来,深度学习(Deep Learning)作为机器学习的一个子集,取得了显著的进展,尤其是在计算机视觉、自然语言处理和语音识别等领域。 
深度学习技术使用多层神经网络结构,能够通过处理大量的数据来自动提取特征,从而提高机器学习的性能。 
目前,人工智能已经在多个行业中得到广泛应用,包括医疗健康、金融、自动驾驶等领域。


摘要:
  
目前,人工智能已经在多个行业中得到广泛应用,包括医疗健康、金融、自动驾驶等领域。机器学习通过从数据中学习,识别模式,并根据少量人为干预做出决策。 
深度学习技术使用多层神经网络结构,能够通过处理大量的数据来自动提取特征,从而提高机器学习的性能
相关推荐
一个处女座的程序猿7 分钟前
AI之Agent之VibeCoding:《Vibe Coding Kills Open Source》翻译与解读
人工智能·开源·vibecoding·氛围编程
Jay Kay13 分钟前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
风指引着方向24 分钟前
归约操作优化:ops-math 的 Sum/Mean/Max 实现
人工智能·wpf
机器之心24 分钟前
英伟达世界模型再进化,一个模型驱动所有机器人!机器人的GPT时刻真正到来
人工智能·openai
纯爱掌门人30 分钟前
终焉轮回里,藏着 AI 与人类的答案
前端·人工智能·aigc
人工智能AI技术34 分钟前
Transformer:大模型的“万能骨架”
人工智能
gpfyyds66634 分钟前
Python代码练习
开发语言·python
uesowys1 小时前
Apache Spark算法开发指导-Factorization machines classifier
人工智能·算法
人工智能AI技术1 小时前
预训练+微调:大模型的“九年义务教育+专项补课”
人工智能
aircrushin2 小时前
中国多模态大模型历史性突破:智源Emu3自回归统一范式技术深度解读
人工智能