Hot100之矩阵

73矩阵置零

题目

思路解析

收集0位置所在的行和列

然后该行全部初始化为0

该列全部初始化为0

代码

复制代码
class Solution {
    public void setZeroes(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;

        List<Integer> list1 = new ArrayList<>();
        List<Integer> list2 = new ArrayList<>();

        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == 0) {
                    list1.add(i);
                    list2.add(j);
                }
            }
        }

        for (int temp : list1) {
            for (int i = 0; i < n; i++) {
                matrix[temp][i] = 0;
            }
        }

        for (int temp : list2) {
            for (int i = 0; i < m; i++) {
                matrix[i][temp] = 0;
            }
        }
    }
}

54螺旋矩阵

题目

思路解析

直接左右下左上

这样子循环遍历就好了

主要注意的是我们的边界处理问题

代码

复制代码
class Solution {
    public List<Integer> spiralOrder(int[][] matrix) {
        List<Integer> ans = new ArrayList<>();
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return ans;

        int up = 0, down = matrix.length - 1;
        int left = 0, right = matrix[0].length - 1;

        while (true) {

            for (int i = left; i <= right; i++) { // 左->右
                ans.add(matrix[up][i]);
            }

            if (++up > down) break;
            for (int i = up; i <= down; i++) { // 上->下
                ans.add(matrix[i][right]);
            }

            if (--right < left) break;
            for (int i = right; i >= left; i--) { // 右->左
                ans.add(matrix[down][i]);
            }

            if (--down < up) break;
            for (int i = down; i >= up; i--) { // 下->上
                ans.add(matrix[i][left]);
            }

            if (++left > right) break;
            
        }

        return ans;
    }
}

48旋转图像

题目

思路解析

辅助矩阵

我们clone一个矩阵辅助我们,然后根据公式计算

原地修改

如上图所示,一轮可以完成矩阵 4 个元素的旋转。因而,只要分别以矩阵左上角 1/4 的各元素为起始点执行以上旋转操作,即可完整实现矩阵旋转。

具体来看,当矩阵大小 n 为偶数时,取前 n/2 行、前 n/2 列的元素为起始点;

当矩阵大小 n 为奇数时,取前 n/2 行、前 (n+1)/2 列的元素为起始点

i=0,j=0
i=0,j=1
i=1,j=0
i=1,j=1

代码

辅助矩阵
复制代码
class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        // 深拷贝 matrix -> tmp
        int[][] tmp = new int[n][];
        for (int i = 0; i < n; i++)
            tmp[i] = matrix[i].clone();
        // 根据元素旋转公式,遍历修改原矩阵 matrix 的各元素
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                matrix[j][n - 1 - i] = tmp[i][j];
            }
        }
    }
}
原地修改
复制代码
class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        for (int i = 0; i < n / 2; i++) {
            
        for (int j = 0; j < (n + 1) / 2; j++) {
                int tmp = matrix[i][j];
                matrix[i][j] = matrix[n - 1 - j][i];
                matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];
                matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];
                matrix[j][n - 1 - i] = tmp;
            }
            
        }
    }
}

240搜索二维矩阵

题目

思路解析

灵神题解-排除法

我们从右上角开始

我们先通过每行最后一个位置来排除行

行排除完之后,我们再根据列最小的位置来排除列

代码

复制代码
class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int i = 0;
        int j = matrix[0].length - 1; // 从右上角开始
        while (i < matrix.length && j >= 0) { // 还有剩余元素
            if (matrix[i][j] == target) {
                return true; // 找到 target
            }
            if (matrix[i][j] < target) {
                i++; // 这一行剩余元素全部小于 target,排除
            } else {
                j--; // 这一列剩余元素全部大于 target,排除
            }
        }
        return false;
    }
}
相关推荐
桐果云19 小时前
解锁桐果云零代码数据平台能力矩阵——赋能零售行业数字化转型新动能
大数据·人工智能·矩阵·数据挖掘·数据分析·零售
自信的小螺丝钉20 小时前
Leetcode 240. 搜索二维矩阵 II 矩阵 / 二分
算法·leetcode·矩阵
lytk991 天前
矩阵中寻找好子矩阵
线性代数·算法·矩阵
fFee-ops1 天前
240. 搜索二维矩阵 II
线性代数·矩阵
fFee-ops1 天前
54. 螺旋矩阵
线性代数·矩阵
hansang_IR2 天前
【线性代数基础 | 那忘算9】基尔霍夫(拉普拉斯)矩阵 & 矩阵—树定理证明 [详细推导]
c++·笔记·线性代数·算法·矩阵·矩阵树定理·基尔霍夫矩阵
KarrySmile2 天前
网格图--Day04--网格图DFS--2684. 矩阵中移动的最大次数,1254. 统计封闭岛屿的数目,130. 被围绕的区域
矩阵·深度优先·dfs·深度优先搜索·灵茶山艾府·网格图·网格图dfs
lingchen19062 天前
MATLAB矩阵及其运算(三)矩阵的创建
算法·matlab·矩阵
Dream it possible!2 天前
LeetCode 面试经典 150_矩阵_有效的数独(34_36_C++_中等)(额外数组)
leetcode·面试·矩阵
斐夷所非2 天前
线性代数基础 | 基底 / 矩阵 / 行列式 / 秩 / 线性方程组
线性代数