KOA优化最近邻分类预测matlab

开普勒优化算法(Kepler Optimization Algorithm,简称 KOA),作为一种元启发式算法,其灵感源自开普勒的行星运动规律。该算法模拟行星在不同时刻的位置与速度,将每个行星视为一个候选解。在优化进程中,这些候选解会相对于当前所找到的最佳解(即 "太阳")进行随机更新。通过引入多个行星候选解,KOA 能够对搜索空间进行更为有效的探索与利用。这是因为不同时间的行星呈现出各异状态,对全局优化颇为有利。

此次所使用的数据为 Excel 分类数据集。该数据集按照 8:1:1 的比例,被划分为训练集、验证集以及测试集。

在代码结构方面,采用了模块化设计。依据功能模块,清晰地将代码分为数据准备、参数设置、算法处理以及结果展示等部分。这种划分方式极大地提升了代码的可读性与可维护性。

数据处理流程清晰明确,对数据实施了标准化处理,其中包括 Zscore 标准化。通过将数据分为训练集、验证集和测试集,有力地保障了模型训练的准确性与可靠性。

关于模型评估,代码运用十折交叉验证等方法来评估模型性能,计算训练集、验证集和测试集的准确率,并输出十折验证准确率以及运行时长。此外,还通过绘制分类情况图与混淆矩阵,对模型的分类效果进行可视化展示,从而帮助使用者更直观地了解模型性能与分类结果。

在结果可视化方面,通过绘制 KOA 寻优过程收敛曲线、分类情况图以及混淆矩阵,直观呈现了模型的分类效果,有助于对模型性能进行直观的分析与比较。

输出定量结果如下:

十折验证准确率:0.95935

训练集ACU:0.95122

验证集ACU:0.9375

测试集ACU:1

运行时长: 0.122

代码有中文介绍。

算法设计、毕业设计、期刊专利!感兴趣可以联系我。

🏆代码获取方式1:

私信博主

🏆代码获取方式2

利用同等价值的matlab代码兑换博主的matlab代码

先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。

相关推荐
政安晨2 小时前
政安晨【零基础玩转开源AI项目】- AutoGPT:全球首个自主AI Agent从入门到实战(致敬OpenClaw的小回顾)
人工智能·ai·autogpt·全球首个agent框架·致敬openclaw之作·参考价值·ai开源agent框架
Shawn_Shawn6 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
冷雨夜中漫步8 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
33三 三like8 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a8 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
郝学胜-神的一滴8 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再8 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
李慕婉学姐8 小时前
【开题答辩过程】以《基于社交网络用户兴趣大数据分析》为例,不知道这个选题怎么做的,不知道这个选题怎么开题答辩的可以进来看看
数据挖掘·数据分析
腾讯云开发者9 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗9 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo