【Leetcode 每日一题】1760. 袋子里最少数目的球

问题背景

给你一个整数数组 n u m s nums nums,其中 n u m s [ i ] nums[i] nums[i] 表示第 i i i 个袋子里球的数目。同时给你一个整数 m a x O p e r a t i o n s maxOperations maxOperations。

你可以进行如下操作至多 m a x O p e r a t i o n s maxOperations maxOperations 次:

选择任意一个袋子,并将袋子里的球分到 2 2 2 个新的袋子中,每个袋子里都有 正整数 个球。

  • 比方说,一个袋子里有 5 5 5 个球,你可以把它们分到两个新袋子里,分别有 1 1 1 个和 4 4 4 个球,或者分别有 2 2 2 个和 3 3 3 个球。

你的开销是单个袋子里球数目的 最大值 ,你想要 最小化 开销。

请你返回进行上述操作后的最小开销。

数据约束

  • 1 ≤ n u m s . l e n g t h ≤ 1 0 5 1 \le nums.length \le 10 ^ 5 1≤nums.length≤105
  • 1 ≤ m a x O p e r a t i o n s , n u m s [ i ] ≤ 1 0 9 1 \le maxOperations, nums[i] \le 10 ^ 9 1≤maxOperations,nums[i]≤109

解题过程

遇到最小化最大值,最大化最小值,要考虑二分答案法。

这题可能的结果范围就是由数组中的最小最大值构成的,在这个范围上,每组中可放的球越少,要操作的次数就越多。

二分的标准,是按照当前数量分组能不能满足在规定的最大操作次数以内完成分割。

具体实现

java 复制代码
class Solution {
    public int minimumSize(int[] nums, int maxOperations) {
        int max = 0;
        for (int num : nums) {
            max = Math.max(max, num);
        }

        int left = 1;
        int right = max;
        while (left < right) {
            int mid = left + ((right - left) >>> 1);
            if (check(nums, maxOperations, mid)) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }

    private boolean check(int[] nums, int maxOperations, int max) {
        long res = 0;
        for (int num : nums) {
            res += (num - 1) / max;
        }
        return res <= maxOperations;
    }
}
相关推荐
How_doyou_do2 分钟前
备战菊厂笔试4
python·算法·leetcode
朱剑君2 分钟前
第九天——贪心算法——非递减数组
算法·贪心算法
Wnq1007232 分钟前
工业场景轮式巡检机器人纯视觉识别导航的优势剖析与前景展望
人工智能·算法·计算机视觉·激光雷达·视觉导航·人形机器人·巡检机器人
天上路人2 小时前
AI神经网络降噪算法在语音通话产品中的应用优势与前景分析
深度学习·神经网络·算法·硬件架构·音视频·实时音视频
好吃的肘子3 小时前
MongoDB 应用实战
大数据·开发语言·数据库·算法·mongodb·全文检索
汉克老师3 小时前
GESP2025年3月认证C++二级( 第三部分编程题(1)等差矩阵)
c++·算法·矩阵·gesp二级·gesp2级
sz66cm3 小时前
算法基础 -- 小根堆构建的两种方式:上浮法与下沉法
数据结构·算法
緈福的街口3 小时前
【leetcode】94. 二叉树的中序遍历
算法·leetcode
顾小玙4 小时前
数据结构进阶:AVL树与红黑树
数据结构
小刘要努力呀!4 小时前
嵌入式开发学习(第二阶段 C语言基础)
c语言·学习·算法