【Leetcode 每日一题】1760. 袋子里最少数目的球

问题背景

给你一个整数数组 n u m s nums nums,其中 n u m s [ i ] nums[i] nums[i] 表示第 i i i 个袋子里球的数目。同时给你一个整数 m a x O p e r a t i o n s maxOperations maxOperations。

你可以进行如下操作至多 m a x O p e r a t i o n s maxOperations maxOperations 次:

选择任意一个袋子,并将袋子里的球分到 2 2 2 个新的袋子中,每个袋子里都有 正整数 个球。

  • 比方说,一个袋子里有 5 5 5 个球,你可以把它们分到两个新袋子里,分别有 1 1 1 个和 4 4 4 个球,或者分别有 2 2 2 个和 3 3 3 个球。

你的开销是单个袋子里球数目的 最大值 ,你想要 最小化 开销。

请你返回进行上述操作后的最小开销。

数据约束

  • 1 ≤ n u m s . l e n g t h ≤ 1 0 5 1 \le nums.length \le 10 ^ 5 1≤nums.length≤105
  • 1 ≤ m a x O p e r a t i o n s , n u m s [ i ] ≤ 1 0 9 1 \le maxOperations, nums[i] \le 10 ^ 9 1≤maxOperations,nums[i]≤109

解题过程

遇到最小化最大值,最大化最小值,要考虑二分答案法。

这题可能的结果范围就是由数组中的最小最大值构成的,在这个范围上,每组中可放的球越少,要操作的次数就越多。

二分的标准,是按照当前数量分组能不能满足在规定的最大操作次数以内完成分割。

具体实现

java 复制代码
class Solution {
    public int minimumSize(int[] nums, int maxOperations) {
        int max = 0;
        for (int num : nums) {
            max = Math.max(max, num);
        }

        int left = 1;
        int right = max;
        while (left < right) {
            int mid = left + ((right - left) >>> 1);
            if (check(nums, maxOperations, mid)) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }

    private boolean check(int[] nums, int maxOperations, int max) {
        long res = 0;
        for (int num : nums) {
            res += (num - 1) / max;
        }
        return res <= maxOperations;
    }
}
相关推荐
牛客企业服务5 分钟前
2025年AI面试推荐榜单,数字化招聘转型优选
人工智能·python·算法·面试·职场和发展·金融·求职招聘
糖葫芦君44 分钟前
Policy Gradient【强化学习的数学原理】
算法
向阳@向远方2 小时前
第二章 简单程序设计
开发语言·c++·算法
github_czy3 小时前
RRF (Reciprocal Rank Fusion) 排序算法详解
算法·排序算法
许愿与你永世安宁4 小时前
力扣343 整数拆分
数据结构·算法·leetcode
爱coding的橙子4 小时前
每日算法刷题Day42 7.5:leetcode前缀和3道题,用时2h
算法·leetcode·职场和发展
满分观察网友z4 小时前
从一次手滑,我洞悉了用户输入的所有可能性(3330. 找到初始输入字符串 I)
算法
YuTaoShao5 小时前
【LeetCode 热题 100】73. 矩阵置零——(解法二)空间复杂度 O(1)
java·算法·leetcode·矩阵
Heartoxx5 小时前
c语言-指针(数组)练习2
c语言·数据结构·算法
大熊背5 小时前
图像处理专业书籍以及网络资源总结
人工智能·算法·microsoft