【Leetcode 每日一题】1760. 袋子里最少数目的球

问题背景

给你一个整数数组 n u m s nums nums,其中 n u m s [ i ] nums[i] nums[i] 表示第 i i i 个袋子里球的数目。同时给你一个整数 m a x O p e r a t i o n s maxOperations maxOperations。

你可以进行如下操作至多 m a x O p e r a t i o n s maxOperations maxOperations 次:

选择任意一个袋子,并将袋子里的球分到 2 2 2 个新的袋子中,每个袋子里都有 正整数 个球。

  • 比方说,一个袋子里有 5 5 5 个球,你可以把它们分到两个新袋子里,分别有 1 1 1 个和 4 4 4 个球,或者分别有 2 2 2 个和 3 3 3 个球。

你的开销是单个袋子里球数目的 最大值 ,你想要 最小化 开销。

请你返回进行上述操作后的最小开销。

数据约束

  • 1 ≤ n u m s . l e n g t h ≤ 1 0 5 1 \le nums.length \le 10 ^ 5 1≤nums.length≤105
  • 1 ≤ m a x O p e r a t i o n s , n u m s [ i ] ≤ 1 0 9 1 \le maxOperations, nums[i] \le 10 ^ 9 1≤maxOperations,nums[i]≤109

解题过程

遇到最小化最大值,最大化最小值,要考虑二分答案法。

这题可能的结果范围就是由数组中的最小最大值构成的,在这个范围上,每组中可放的球越少,要操作的次数就越多。

二分的标准,是按照当前数量分组能不能满足在规定的最大操作次数以内完成分割。

具体实现

java 复制代码
class Solution {
    public int minimumSize(int[] nums, int maxOperations) {
        int max = 0;
        for (int num : nums) {
            max = Math.max(max, num);
        }

        int left = 1;
        int right = max;
        while (left < right) {
            int mid = left + ((right - left) >>> 1);
            if (check(nums, maxOperations, mid)) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }

    private boolean check(int[] nums, int maxOperations, int max) {
        long res = 0;
        for (int num : nums) {
            res += (num - 1) / max;
        }
        return res <= maxOperations;
    }
}
相关推荐
wow_DG18 分钟前
【C++✨】多种 C++ 解法固定宽度右对齐输出(每个数占 8 列)
开发语言·c++·算法
Epiphany.55627 分钟前
c++最长上升子序列长度
c++·算法·图论
Cx330❀1 小时前
【数据结构初阶】--排序(四):归并排序
c语言·开发语言·数据结构·算法·排序算法
余_弦1 小时前
区块链中的密码学 —— 密钥派生算法
算法·区块链
艾莉丝努力练剑2 小时前
【C语言16天强化训练】从基础入门到进阶:Day 1
c语言·开发语言·数据结构·学习
亲爱的非洲野猪2 小时前
令牌桶(Token Bucket)和漏桶(Leaky Bucket)细节对比
网络·算法·限流·服务
NAGNIP2 小时前
一文读懂LLAMA
算法
烧冻鸡翅QAQ2 小时前
62.不同路径
算法·动态规划
番薯大佬2 小时前
编程算法实例-冒泡排序
数据结构·算法·排序算法
queenlll2 小时前
P2404 自然数的拆分问题(典型的dfs)
算法·深度优先