leetcode 1594. 矩阵的最大非负积

题目如下

数据范围

示例

复制代码
本题难就难在矩阵存在负数,我们可以先思考如果矩阵每个数都大于等于0那么很简单我们只需要维护左边和上面的最大值即可。那么如果遇到负数显然要得到最大值就要和左边和右边的最小值相乘。所以这里我们维护两个二维数组用于存从(0,0)开始到(i,j)的最大值和最小值。

通过代码

cpp 复制代码
class Solution {
public:
    int maxProductPath(vector<vector<int>>& grid) {
        int n = grid.size();
        int m = grid[0].size();
        int mod = 1e9 + 7;
        vector<vector<long long>> dp1(n, vector<long long>(m));
        vector<vector<long long>> dp2(n, vector<long long>(m));
        dp1[0][0] = dp2[0][0] = grid[0][0];
        for (int i = 1; i < n; i++) {
            dp1[i][0] = dp2[i][0] = grid[i][0] * dp1[i - 1][0];
        }
        for (int i = 1; i < m; i++) {
            dp1[0][i] = dp2[0][i] = grid[0][i] * dp1[0][i - 1];
        }
        for (int i = 1; i < n; i++) {
            for (int j = 1; j < m; j++) {

                if (grid[i][j] >= 0) {
                    dp1[i][j] = max(dp1[i - 1][j], dp1[i][j - 1]) * grid[i][j];
                    dp2[i][j] = min(dp2[i - 1][j], dp2[i][j - 1]) * grid[i][j];
                } else {
                    dp1[i][j] = min(dp2[i - 1][j], dp2[i][j - 1]) * grid[i][j];
                    dp2[i][j] = max(dp1[i - 1][j], dp1[i][j - 1]) * grid[i][j];
                }
            }
        }

        if (dp1[n - 1][m - 1] < 0)
            return -1;
        return dp1[n - 1][m - 1] % mod;
    }
};

利用滚动数组思想优化后的代码

cpp 复制代码
class Solution {
public:
    int maxProductPath(vector<vector<int>>& grid) {
        int n = grid.size();
        int m = grid[0].size();
        int mod = 1e9 + 7;
        vector<long long> dp1(m);
        vector<long long> dp2(m);
        long long t1, t2;
        dp1[0] = dp2[0] = grid[0][0];
        for (int i = 1; i < m; i++) {
            dp1[i] = dp2[i] = grid[0][i] * dp1[i - 1];
        }
        for (int i = 1; i < n; i++) {
            dp1[0] = dp2[0] = dp1[0] * grid[i][0];
            for (int j = 1; j < m; j++) {
                if (grid[i][j] >= 0) {
                    dp1[j] = max(dp1[j - 1], dp1[j]) * grid[i][j];
                    dp2[j] = min(dp2[j - 1], dp2[j]) * grid[i][j];

                } else {
                    t1 = max(dp1[j - 1], dp1[j]);
                    t2 = min(dp2[j - 1], dp2[j]);
                    dp1[j] = t2 * grid[i][j];
                    dp2[j] = t1 * grid[i][j];
                }
            }
        }
        if (dp1[m - 1] < 0)
            return -1;
        return dp1[m - 1] % mod;
    }
};
相关推荐
2301_80025611几秒前
【人工智能引论期末复习】第4章 机器学习1-基础知识
人工智能·算法·机器学习
seeksky2 分钟前
分词与 BPE 实现(tiktoken)
算法
super杨某人4 分钟前
算法十日谈:双指针
数据结构·算法
kklovecode7 分钟前
C语言数组:零长数组,可变数组,多维数组
java·c语言·算法
0***m8229 分钟前
MATLAB高效算法实战技术文章大纲向量化运算替代循环结构
开发语言·算法·matlab
AY呀9 分钟前
《从赛车到代码:我是如何理解深度优先搜索的》
算法
又见野草11 分钟前
C++入门基础(初阶)
开发语言·c++
不知名XL12 分钟前
day22 回溯算法part04
算法·leetcode·职场和发展
好奇龙猫12 分钟前
【大学院-筆記試験練習:线性代数和数据结构(7)】
数据结构·线性代数
Yu_Lijing13 分钟前
基于C++的《Head First设计模式》笔记——命令模式
c++·笔记·设计模式