leetcode 1594. 矩阵的最大非负积

题目如下

数据范围

示例

复制代码
本题难就难在矩阵存在负数,我们可以先思考如果矩阵每个数都大于等于0那么很简单我们只需要维护左边和上面的最大值即可。那么如果遇到负数显然要得到最大值就要和左边和右边的最小值相乘。所以这里我们维护两个二维数组用于存从(0,0)开始到(i,j)的最大值和最小值。

通过代码

cpp 复制代码
class Solution {
public:
    int maxProductPath(vector<vector<int>>& grid) {
        int n = grid.size();
        int m = grid[0].size();
        int mod = 1e9 + 7;
        vector<vector<long long>> dp1(n, vector<long long>(m));
        vector<vector<long long>> dp2(n, vector<long long>(m));
        dp1[0][0] = dp2[0][0] = grid[0][0];
        for (int i = 1; i < n; i++) {
            dp1[i][0] = dp2[i][0] = grid[i][0] * dp1[i - 1][0];
        }
        for (int i = 1; i < m; i++) {
            dp1[0][i] = dp2[0][i] = grid[0][i] * dp1[0][i - 1];
        }
        for (int i = 1; i < n; i++) {
            for (int j = 1; j < m; j++) {

                if (grid[i][j] >= 0) {
                    dp1[i][j] = max(dp1[i - 1][j], dp1[i][j - 1]) * grid[i][j];
                    dp2[i][j] = min(dp2[i - 1][j], dp2[i][j - 1]) * grid[i][j];
                } else {
                    dp1[i][j] = min(dp2[i - 1][j], dp2[i][j - 1]) * grid[i][j];
                    dp2[i][j] = max(dp1[i - 1][j], dp1[i][j - 1]) * grid[i][j];
                }
            }
        }

        if (dp1[n - 1][m - 1] < 0)
            return -1;
        return dp1[n - 1][m - 1] % mod;
    }
};

利用滚动数组思想优化后的代码

cpp 复制代码
class Solution {
public:
    int maxProductPath(vector<vector<int>>& grid) {
        int n = grid.size();
        int m = grid[0].size();
        int mod = 1e9 + 7;
        vector<long long> dp1(m);
        vector<long long> dp2(m);
        long long t1, t2;
        dp1[0] = dp2[0] = grid[0][0];
        for (int i = 1; i < m; i++) {
            dp1[i] = dp2[i] = grid[0][i] * dp1[i - 1];
        }
        for (int i = 1; i < n; i++) {
            dp1[0] = dp2[0] = dp1[0] * grid[i][0];
            for (int j = 1; j < m; j++) {
                if (grid[i][j] >= 0) {
                    dp1[j] = max(dp1[j - 1], dp1[j]) * grid[i][j];
                    dp2[j] = min(dp2[j - 1], dp2[j]) * grid[i][j];

                } else {
                    t1 = max(dp1[j - 1], dp1[j]);
                    t2 = min(dp2[j - 1], dp2[j]);
                    dp1[j] = t2 * grid[i][j];
                    dp2[j] = t1 * grid[i][j];
                }
            }
        }
        if (dp1[m - 1] < 0)
            return -1;
        return dp1[m - 1] % mod;
    }
};
相关推荐
米粉03055 分钟前
算法图表总结:查找、排序与递归(含 Mermaid 图示)
数据结构·算法·排序算法
人类发明了工具25 分钟前
【优化算法】协方差矩阵自适应进化策略(Covariance Matrix Adaptation Evolution Strategy,CMA-ES)
线性代数·算法·矩阵·cma-es
黑色的山岗在沉睡28 分钟前
LeetCode100.4 移动零
数据结构·算法·leetcode
霖0030 分钟前
PCIe数据采集系统
数据结构·经验分享·单片机·嵌入式硬件·fpga开发·信号处理
_Itachi__33 分钟前
LeetCode 热题 100 114. 二叉树展开为链表
linux·leetcode·链表
敷啊敷衍35 分钟前
深入探索 C++ 中的 string 类:从基础到实践
开发语言·数据结构·c++
方博士AI机器人1 小时前
算法与数据结构 - 二叉树结构入门
数据结构·算法·二叉树
{⌐■_■}1 小时前
【redis】redis常见数据结构及其底层,redis单线程读写效率高于多线程的理解,
数据结构·数据库·redis
-qOVOp-1 小时前
zst-2001 上午题-历年真题 算法(5个内容)
算法
什么名字都被用了1 小时前
编译openssl源码
c++·openssl