leetcode 1594. 矩阵的最大非负积

题目如下

数据范围

示例

复制代码
本题难就难在矩阵存在负数,我们可以先思考如果矩阵每个数都大于等于0那么很简单我们只需要维护左边和上面的最大值即可。那么如果遇到负数显然要得到最大值就要和左边和右边的最小值相乘。所以这里我们维护两个二维数组用于存从(0,0)开始到(i,j)的最大值和最小值。

通过代码

cpp 复制代码
class Solution {
public:
    int maxProductPath(vector<vector<int>>& grid) {
        int n = grid.size();
        int m = grid[0].size();
        int mod = 1e9 + 7;
        vector<vector<long long>> dp1(n, vector<long long>(m));
        vector<vector<long long>> dp2(n, vector<long long>(m));
        dp1[0][0] = dp2[0][0] = grid[0][0];
        for (int i = 1; i < n; i++) {
            dp1[i][0] = dp2[i][0] = grid[i][0] * dp1[i - 1][0];
        }
        for (int i = 1; i < m; i++) {
            dp1[0][i] = dp2[0][i] = grid[0][i] * dp1[0][i - 1];
        }
        for (int i = 1; i < n; i++) {
            for (int j = 1; j < m; j++) {

                if (grid[i][j] >= 0) {
                    dp1[i][j] = max(dp1[i - 1][j], dp1[i][j - 1]) * grid[i][j];
                    dp2[i][j] = min(dp2[i - 1][j], dp2[i][j - 1]) * grid[i][j];
                } else {
                    dp1[i][j] = min(dp2[i - 1][j], dp2[i][j - 1]) * grid[i][j];
                    dp2[i][j] = max(dp1[i - 1][j], dp1[i][j - 1]) * grid[i][j];
                }
            }
        }

        if (dp1[n - 1][m - 1] < 0)
            return -1;
        return dp1[n - 1][m - 1] % mod;
    }
};

利用滚动数组思想优化后的代码

cpp 复制代码
class Solution {
public:
    int maxProductPath(vector<vector<int>>& grid) {
        int n = grid.size();
        int m = grid[0].size();
        int mod = 1e9 + 7;
        vector<long long> dp1(m);
        vector<long long> dp2(m);
        long long t1, t2;
        dp1[0] = dp2[0] = grid[0][0];
        for (int i = 1; i < m; i++) {
            dp1[i] = dp2[i] = grid[0][i] * dp1[i - 1];
        }
        for (int i = 1; i < n; i++) {
            dp1[0] = dp2[0] = dp1[0] * grid[i][0];
            for (int j = 1; j < m; j++) {
                if (grid[i][j] >= 0) {
                    dp1[j] = max(dp1[j - 1], dp1[j]) * grid[i][j];
                    dp2[j] = min(dp2[j - 1], dp2[j]) * grid[i][j];

                } else {
                    t1 = max(dp1[j - 1], dp1[j]);
                    t2 = min(dp2[j - 1], dp2[j]);
                    dp1[j] = t2 * grid[i][j];
                    dp2[j] = t1 * grid[i][j];
                }
            }
        }
        if (dp1[m - 1] < 0)
            return -1;
        return dp1[m - 1] % mod;
    }
};
相关推荐
西***634720 分钟前
从被动响应到主动预判:矩阵技术重塑机场安全监控新生态
线性代数·矩阵
云小逸39 分钟前
【Nmap 设备类型识别技术】整体概况
服务器·c语言·网络·c++·nmap
梯度下降中40 分钟前
求职面试中的线代知识总结
人工智能·线性代数·算法·机器学习
SmartBrain1 小时前
OCR 模型在医疗场景的选型研究
人工智能·算法·语言模型·架构·aigc·ocr
梵刹古音1 小时前
【C语言】 跳转语句
c语言·开发语言·算法
liu****1 小时前
29.路径类dp
c++·算法·acm
JMchen1231 小时前
Android计算摄影实战:多帧合成、HDR+与夜景算法深度剖析
android·经验分享·数码相机·算法·移动开发·android-studio
阿猿收手吧!1 小时前
【C++】C++模板特化:精准定制泛型逻辑
开发语言·c++·算法
智驱力人工智能1 小时前
货车走快车道检测 高速公路安全治理的工程实践与价值闭环 高速公路货车占用小客车道抓拍系统 城市快速路货车违规占道AI识别
人工智能·opencv·算法·安全·yolo·目标检测·边缘计算
喵手2 小时前
Python爬虫实战:电商实体消歧完整实战 - 从混乱店铺名到标准化知识库的工程化实现,一文带你搞定!
爬虫·python·算法·爬虫实战·零基础python爬虫教学·同名实体消除·从混乱店铺名到标准化知识库