一、单个无人机路径规划模型介绍
无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行时间和节省能量消耗。

二、无人机集群模型介绍
本文中以5个无人机构成无人机集群,采用优化算法同时规划五个无人机的路径,每个无人机的成本由路径成本、威胁成本、高度成本和转角成本四个部分构成。无人机集群的总成本为5个无人机成本之和。
三、5种算法求解无人机集群路径规划
-
海星优化算法(Starfish Optimization Algorithm, SFOA):
海星优化算法(Starfish Optimization Algorithm ,SFOA)是2024年提出的一种元启发式算法,该算法模拟了海星的行为,包括探索、捕食和再生。
参考文献:Changting Zhong, Gang Li, Zeng Meng, Haijiang Li, Ali Riza Yildiz, Seyedali Mirjalili. Starfish Optimization Algorithm (SFOA): A bio-inspired metaheuristic algorithm for global optimization compared with 100 optimizers. Neural Computing and Applications, 2024,
-
极光优化算法( Polar Lights Optimization, PLO**)**:
极光优化算法(Polar Lights Optimization, PLO)是2024年提出的一种新型的元启发式优化算法,它从极光这一自然现象中汲取灵感。极光是由太阳风中的带电粒子在地球磁场的作用下,与地球大气层中的气体分子碰撞而产生的光显示。PLO算法通过模拟这些带电粒子的运动轨迹和动力学过程,提出了一种有效的优化策略,旨在解决复杂的优化问题。
参考文献:
[1]Yuan, Chong, Dong Zhao, Ali Asghar Heidari, Lei Liu, Yi Chen and Huiling Chen. "Polar lights optimizer: Algorithm and applications in image segmentation and feature selection." Neurocomputing 607 (2024): 128427.
-
互联银行系统优化(Connected Banking System Optimizer,CBSO)算法:
互联银行系统优化(Connected Banking System Optimizer,CBSO)算法是2024年由Mehrdad Nemati等人提出的一种智能优化算法,其灵感来源于银行系统之间的连接和交易过程。在银行系统中,核心银行出现问题会影响其他银行,甚至可能导致整个系统崩溃。银行之间可以通过双边交易直接连接,成功连接的银行会影响其他连接的质量。
原文链接:https://blog.csdn.net/weixin_46204734/article/details/145648637
-
教育竞争优化算法( Educational Competition Optimizer,ECO**)**:
教育竞争优化算法(Educational Competition Optimizer,ECO)是一种模拟教育竞争过程的元启发式算法,用于解决复杂的优化问题。ECO算法的设计理念是模仿学生在教育体系中的竞争,通过这种竞争机制来搜索和优化解决方案。
参考文献
[1]Lian, Junbo, Ting Zhu, Ling Ma, Xincan Wu, Ali Asghar Heidari, Yi Chen, Huiling Chen, and Guohua Hui. 2024. "The Educational Competition Optimizer." International Journal of Systems Science 55 (15): 3185--3222. doi:10.1080/00207721.2024.2367079.
原文链接:https://blog.csdn.net/weixin_46204734/article/details/142896498
-
青蒿素优化算法( Artemisinin Optimization Algorithm, AOA**)**:
青蒿素优化算法(Artemisinin Optimization Algorithm, AOA)是2024年提出的一种受青蒿素抗疟疾特性启发的元启发式优化算法。青蒿素是一种从中草药青蒿中提取的化合物,因其在治疗疟疾方面的显著效果而闻名。AOA算法的设计者将青蒿素的这一特性抽象为优化策略,用于解决工程和科学中的优化问题。
[1] Yuan C , Zhao D , Heidari A A ,et al.Artemisinin optimization based on malaria therapy: Algorithm and applications to medical image segmentation[J].Displays, 2024, 84.DOI:10.1016/j.displa.2024.102740.
原文链接:https://blog.csdn.net/weixin_46204734/article/details/142897235
四、求解结果
4.1部分代码
close all
clear
clc
dbstop if all error
global model
model = CreateModel(); % 创建模型
F='F1';
[Xmin,Xmax,dim,fobj] = fun_info(F);%获取函数信息
pop=50;%种群大小(可以自己修改)
maxgen=100;%最大迭代次数(可以自己修改)
for i=1:length(algorithName)
Algorithm=str2func(algorithName{i});
[fMin,bestX,ConvergenceCurve] = Algorithm(pop, maxgen,Xmin,Xmax,dim,fobj);
result(i).fMin=fMin;
result(i).bestX=bestX;
result(i).ConvergenceCurve=ConvergenceCurve;
result(i).BestPosition=BestPosition;
result(i).BestFit=BestFit;
result(i).UAVfit=UAVfit;
end
save result result
4.2部分结果
部分结果:



































五、完整MATLAB代码
见下方 名片