python学opencv|读取图像(六十六)使用cv2.minEnclosingCircle函数实现图像轮廓圆形标注

【1】引言

前序学习过程中,已经掌握了使用cv2.boundingRect()函数实现图像轮廓矩形标注,相关文章链接为:python学opencv|读取图像(六十五)使用cv2.boundingRect()函数实现图像轮廓矩形标注-CSDN博客

这篇文章成功在图像上绘制出了矩形,在此基础上,如果想进一步绘制圆形标注,就需要调用cv2.minEnclosingCircle函数。

【2】官网教程

点击下方链接,直达cv2.minEnclosingCircle()函数的官网教程:

OpenCV: Structural Analysis and Shape Descriptors

官网对 cv2.minEnclosingCircle()函数的说明为:

++图1 官网对 cv2.minEnclosingCircle()函数的说明++

官网对 cv2.minEnclosingCircle()函数的参数说明为:

points:轮廓的数组,可以直接用轮廓来代表

center:返回值,最小的圆形的圆心;

radius:返回值,最小的圆形的半径。

【3】代码测试

和之前一样,cv2.minEnclosingCircle()函数要想用圆形作为标签标注图形的轮廓,需要提前知晓图像的轮廓位置,所以依然要调用 cv2.findContours()函数来找到轮廓。

cv2.minEnclosingCircle()函数和cv2.findContours()函数有一个共同点,就是必须要对灰度图像才有效,所以必须提前调用cv2.cvtColor()函数转换灰度图,而为了更进一步突出灰度图,有时候需要调用cv2.threshold()函数进行阈值处理。

如果对上述函数不熟悉,可以通过下述链接回忆:

python学opencv|读取图像(六十四)使用cv2.findContours()函数+cv2.drawContours()函数实现图像轮廓识别和标注-CSDN博客

python学opencv|读取图像(二十)使用cv2.circle()绘制圆形_python cv2.circle-CSDN博客

python学opencv|读取图像(十一)彩色图像转灰度图的两种办法_识别图像输出灰度图-CSDN博客

按照上述分析的逻辑,代码设置为:引入必要模块和图像,图像灰度处理,图像阈值处理,给灰度图像找边界轮廓,然后是绘制圆形标注。

此处直接给出完整代码:

python 复制代码
import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块

# 读取图片
src = cv.imread('df.png') #读取图像srcx.png
gray=cv.cvtColor(src,cv.COLOR_BGR2GRAY) #将图像转化为灰度图

#图像处理
canvas = np.ones((580, 580, 3), np.uint8)*158  # 绘制一个580*580大小的画布,3代表有3个通道,unit8为图像存储格式
t,dst=cv.threshold(gray,10,255,cv.THRESH_BINARY) #阈值处理
con,hierarchy=cv.findContours(dst,cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE) #读取边界
c,r=cv.minEnclosingCircle(con[0]) #获取第一轮廓的最小矩形边框,记录左上角坐标、宽和高
cx=int((c[0])) #取圆心x坐标
cy=int((c[1])) #取圆心y坐标
print('con=',len(con)) #输出con代表的轮廓列表数量
print('c=',c,'cx=',cx,'cy=',cy) #输出圆心
print('r=',r,'int(r)=',int(r)) #输出半径
print(src.shape) #输出src图像基本属性
cv.circle(src,(cx,cy),int(r),(200,100,255),5) #绘制圆形
#cv.imshow('ini-image ', dst) #显示原始图像
cv.imshow('ini-image-con', src) #显示带轮廓线图像
canvas=cv.circle(canvas,(cx,cy),int(r),(0,100,255),5)
cv.imshow('rectangle', canvas)  # 在屏幕展示画线段的效果
#cv.imshow('ini-image-gon', gray) #显示带轮廓线图像
cv.imwrite('ini-image-con.png', src) #保存图像
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

代码运行相关的图像为:

++图2 初始图像++

++图3 圆形标注图像++

由图2到图3可知,图像准确标注出了圆形。

【4】细节说明

在使用纯黑白图像时,顺利获得了如图3所示的矩形标注效果。

如果图像稍微复杂一些,是否效果依旧显著。

将输入图像更换为略复杂的图像:

++图4 初始图像更换后++

++图5 实际运行效果-标注了一个点++

由图5可见,实际运行效果只在人像上标注了一个点。

为此,追溯了原因,看读取的一些基本信息:

++图6 基本信息++

在控制台,获得了一些基本信息,con代表获得的轮廓数,第二行代表像素和通道。

显然,第二个初始图像读出了3285个轮廓,显然这个数据足够大,具体使用哪个轮廓来绘制圆形很难选择。

然后对于第一个初始图像,代码使用的轮廓为con[0],如果将其切换为con[1]:

python 复制代码
src = cv.imread('df.png') #读取图像srcx.png
python 复制代码
x,y,w,h=cv.boundingRect(con[1]) #获取第一轮廓的最小矩形边框,记录左上角坐标、宽和高

代码运行后的效果为:

++图7 第二个矩形轮廓++

由图7可见,如果使用第二个轮廓,绘制的圆形框在图像的边缘。

综上,使用cv2.minEnclosingCircle()函数对图像轮廓进行矩形标注,图像的颜色只要有黑白颜色才会更为准确。

【5】总结

掌握了python+opencv通过使用cv2.minEnclosingCircle()函数对图像轮廓进行圆形标注的技巧。

相关推荐
鸡鸭扣2 小时前
Docker:3、在VSCode上安装并运行python程序或JavaScript程序
运维·vscode·python·docker·容器·js
paterWang2 小时前
基于 Python 和 OpenCV 的酒店客房入侵检测系统设计与实现
开发语言·python·opencv
东方佑2 小时前
使用Python和OpenCV实现图像像素压缩与解压
开发语言·python·opencv
神秘_博士3 小时前
自制AirTag,支持安卓/鸿蒙/PC/Home Assistant,无需拥有iPhone
arm开发·python·物联网·flutter·docker·gitee
Moutai码农4 小时前
机器学习-生命周期
人工智能·python·机器学习·数据挖掘
小白教程5 小时前
python学习笔记,python处理 Excel、Word、PPT 以及邮件自动化办公
python·python学习·python安装
武陵悭臾6 小时前
网络爬虫学习:借助DeepSeek完善爬虫软件,实现模拟鼠标右键点击,将链接另存为本地文件
python·selenium·网络爬虫·pyautogui·deepseek·鼠标右键模拟·保存链接为htm
代码猪猪傻瓜coding6 小时前
关于 形状信息提取的说明
人工智能·python·深度学习
码界筑梦坊7 小时前
基于Flask的第七次人口普查数据分析系统的设计与实现
后端·python·信息可视化·flask·毕业设计
C#Thread7 小时前
机器视觉--索贝尔滤波
人工智能·深度学习·计算机视觉