数据结构与算法:动态规划dp:买卖股票相关力扣题(下):309. 买卖股票的最佳时机含冷冻期、714. 买卖股票的最佳时机含手续费

309. 买卖股票的最佳时机含冷冻期

首先我们要明确,如果全程只能买卖一次或者允许买卖多次,那么我们就没必要记录无操作 这个状态。
如果买卖的次数为k(k≥2),那么我们才要记录无操作这个状态,以此来区分具体是第几次买卖。

在这因为题目说了允许买卖多次,所以我们不需要记录无操作 这个状态。

同时因为含有冷冻期,所以我们需要将不持有股票这个状态再次细分,分为:

  • i天不持有股票,且第i天可以买但不可以卖。
  • i天卖出股票。
  • i天处于冷冻期。
python 复制代码
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        """
        dp[i][0],第i天持有股票时的最大利润
        dp[i][1],第i天不持有股票且,可以买但不可以卖时的最大利润
        dp[i][2],第i天不持有股票且,且就在第i天卖出时的最大利润
        dp[i][3],第i天不持有股票且,第i天处于冷冻期时的最大利润
        """
        n = len(prices)
        if n == 1:
            return 0
        dp = [[0] * 4 for _ in range(n)]
        """
        注意初始化不要写成[[0] * 4] * n,这会导致所有的行引用同一个列表对象
        使得在更新dp[i][j]时,所有行的第j列都会被更新。
        """
        dp[0][0] = -prices[0]
        for i in range(1, n):
            """
            对于 第i天持有股票的最大利润 ,可能由以下状态转移而来:
            1、第i-1天时便持有股票,第i天无操作。
            2、第i-1天时不持有股票且可以买不可以卖,第i天买入股票
            3、第i-1天时不持有股票且同时处于冷冻期,第i天买入股票
            """
            dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i], dp[i-1][3]-prices[i])

            
            """
            对于 第i天不持有股票且,可以买但不可以卖时的最大利润, 可能由以下状态转移而来:
            1、第i-1天不持有股票且,可以买但不可以卖。第i天无操作,从而延续第i-1天的状态
            2、第i-1天不持有股票且,第i-1天处于冷冻期。第i天无操作
            """ 
            dp[i][1] = max(dp[i-1][1], dp[i-1][3])

            """
            对于 第i天不持有股票且,且就在第i天卖出时的最大利润, 一定由以下状态转移而来:
            1、第i-1天时持有股票,第i-1天卖出股票
            """
            dp[i][2] =dp[i-1][0]+prices[i]

            """
            对于 第i天不持有股票且,第i天处于冷冻期时的最大利润, 一定由以下状态转移而来:
            1、第i-1天时不持有股票且,且就在第i-1天卖出。
            """
            dp[i][3] = dp[i-1][2]
        return max(dp[n-1][0], dp[n-1][1], dp[n-1][2], dp[n-1][3])

714. 买卖股票的最佳时机含手续费

python 复制代码
class Solution:
    def maxProfit(self, prices: List[int], fee: int) -> int:
        """
        手续费只在卖出时扣除。
        dp[i][0]代表第i天持有股票时的最大利润
        dp[i][1]代表第i天不持有股票时的最大利润
        """
        length = len(prices)
        if length== 1:
            return 0
        dp = [[0] * 2 for _ in range(length)]
        dp[0][0] = -prices[0]
        for i in range(1, length):
            """"
            第i天持有股票可能由以下状态转换而来:
            1、第i-1天持有股票,第i天无操作
            2、第i-1天不持有股票,第i天买入
            """
            dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i])
            """
            第i天不持有股票可能由以下状态转换而来:
            1、第i-1天持有股票,第i天卖出
            2、第i-1天不持有股票,第i天无操作     
            """
            dp[i][1] = max(dp[i-1][0]+prices[i]-fee, dp[i-1][1])
        return dp[length-1][1]

效率:245ms,击败32.03%

相关推荐
电科_银尘几秒前
【Matlab】-- 基于MATLAB的飞蛾扑火算法与反向传播算法的混凝土强度预测
开发语言·算法·matlab
aiweker2 分钟前
Python PDF解析利器:pdfplumber | AI应用开发
python·pdf
Fuction.2 分钟前
聚类注意点
人工智能·python·机器学习·kmeans·聚类
弈风千秋万古愁16 分钟前
python 语法篇(一)
数据库·python·mysql
wen__xvn24 分钟前
Codeforces Round 1014 (Div. 2)2092A - Kamilka and the Sheep c++
开发语言·c++·算法
moz与京26 分钟前
【附JS、Python、C++题解】Leetcode面试150题(12)多数问题
javascript·python·leetcode
向阳121827 分钟前
doris:备份
后端·python·flask·doris
春风又。30 分钟前
接口自动化——初识pytest
python·测试工具·自动化·pytest
豆芽81932 分钟前
基于 Flask 的图像分类预测案例解读
人工智能·后端·python·深度学习·神经网络·分类·flask
小白的高手之路34 分钟前
Pytorch中torch.nn的学习
人工智能·pytorch·python·深度学习·神经网络·学习·机器学习