神经网络中梯度计算求和公式求导问题

以下是公式一推导出公式二的过程。

  • 表达式一
    ∂ E ∂ w j k = − 2 ( t k − o k ) ⋅ sigmoid ( ∑ j w j k ⋅ o j ) ⋅ ( 1 − sigmoid ( ∑ j w j k ⋅ o j ) ) ⋅ ∂ ∂ w j k ( ∑ j w j k ⋅ o j ) \frac{\partial E}{\partial w_{jk}} = -2(t_k - o_k) \cdot \text{sigmoid}\left(\sum_j w_{jk} \cdot o_j\right) \cdot (1 - \text{sigmoid}\left(\sum_j w_{jk} \cdot o_j\right)) \cdot \frac{\partial}{\partial w_{jk}} \left(\sum_j w_{jk} \cdot o_j\right) ∂wjk∂E=−2(tk−ok)⋅sigmoid(j∑wjk⋅oj)⋅(1−sigmoid(j∑wjk⋅oj))⋅∂wjk∂(j∑wjk⋅oj)

  • 表达式二
    ∂ E ∂ w j k = − 2 ( t k − o k ) ⋅ sigmoid ( ∑ j w j k ⋅ o j ) ⋅ ( 1 − sigmoid ( ∑ j w j k ⋅ o j ) ) ⋅ o j \frac{\partial E}{\partial w_{jk}} = -2(t_k - o_k) \cdot \text{sigmoid}\left(\sum_j w_{jk} \cdot o_j\right) \cdot (1 - \text{sigmoid}\left(\sum_j w_{jk} \cdot o_j\right)) \cdot o_j ∂wjk∂E=−2(tk−ok)⋅sigmoid(j∑wjk⋅oj)⋅(1−sigmoid(j∑wjk⋅oj))⋅oj

这是一个关于神经网络中梯度计算的推导问题,主要运用了链式法则来进行求导推导,以下是详细过程:

已知条件

已知要对 ∂ E ∂ w j , k \frac{\partial E}{\partial w_{j,k}} ∂wj,k∂E 进行求导,表达式最初形式为:
∂ E ∂ w j , k = − 2 ( t k − o k ) ⋅ sigmoid ( ∑ j w j , k ⋅ o j ) ( 1 − sigmoid ( ∑ j w j , k ⋅ o j ) ) ⋅ ∂ ( ∑ j w j , k ⋅ o j ) ∂ w j , k \frac{\partial E}{\partial w_{j,k}} = -2(t_{k} - o_{k}) \cdot \text{sigmoid}(\sum_{j} w_{j,k} \cdot o_{j})(1 - \text{sigmoid}(\sum_{j} w_{j,k} \cdot o_{j})) \cdot \frac{\partial (\sum_{j} w_{j,k} \cdot o_{j})}{\partial w_{j,k}} ∂wj,k∂E=−2(tk−ok)⋅sigmoid(j∑wj,k⋅oj)(1−sigmoid(j∑wj,k⋅oj))⋅∂wj,k∂(∑jwj,k⋅oj)

这里 E E E 通常表示误差, t k t_{k} tk 是目标值, o k o_{k} ok 是输出值, w j , k w_{j,k} wj,k 是权重, o j o_{j} oj 是前一层神经元的输出, sigmoid \text{sigmoid} sigmoid 是激活函数。

推导过程

  1. 重点关注 ∂ ( ∑ j w j , k ⋅ o j ) ∂ w j , k \frac{\partial (\sum_{j} w_{j,k} \cdot o_{j})}{\partial w_{j,k}} ∂wj,k∂(∑jwj,k⋅oj) 这一项。
    • 根据求和求导的性质,对于 ∑ j w j , k ⋅ o j \sum_{j} w_{j,k} \cdot o_{j} ∑jwj,k⋅oj,因为只有当 j j j 取特定值时, w j , k w_{j,k} wj,k 才是变量(其他项的 w i , k w_{i,k} wi,k 中 i ≠ j i \neq j i=j 对于当前求导来说是常量)。
    • 那么 ∑ j w j , k ⋅ o j \sum_{j} w_{j,k} \cdot o_{j} ∑jwj,k⋅oj 展开后,对 w j , k w_{j,k} wj,k 求导时,除了包含 w j , k w_{j,k} wj,k 的这一项,其他项都为 0(因为它们相对于 w j , k w_{j,k} wj,k 是常数)。
    • 而包含 w j , k w_{j,k} wj,k 的这一项为 w j , k ⋅ o j w_{j,k} \cdot o_{j} wj,k⋅oj,根据求导公式 ( a x ) ′ = a (ax)^\prime = a (ax)′=a( a a a 为常数, x x x 为变量),对 w j , k ⋅ o j w_{j,k} \cdot o_{j} wj,k⋅oj 关于 w j , k w_{j,k} wj,k 求导,结果就是 o j o_{j} oj。
  2. 将 ∂ ( ∑ j w j , k ⋅ o j ) ∂ w j , k = o j \frac{\partial (\sum_{j} w_{j,k} \cdot o_{j})}{\partial w_{j,k}} = o_{j} ∂wj,k∂(∑jwj,k⋅oj)=oj 代入原式,就得到了第二个表达式:
    ∂ E ∂ w j , k = − 2 ( t k − o k ) ⋅ sigmoid ( ∑ j w j , k ⋅ o j ) ( 1 − sigmoid ( ∑ j w j , k ⋅ o j ) ) ⋅ o j \frac{\partial E}{\partial w_{j,k}} = -2(t_{k} - o_{k}) \cdot \text{sigmoid}(\sum_{j} w_{j,k} \cdot o_{j})(1 - \text{sigmoid}(\sum_{j} w_{j,k} \cdot o_{j})) \cdot o_{j} ∂wj,k∂E=−2(tk−ok)⋅sigmoid(j∑wj,k⋅oj)(1−sigmoid(j∑wj,k⋅oj))⋅oj

综上,通过对 ∂ ( ∑ j w j , k ⋅ o j ) ∂ w j , k \frac{\partial (\sum_{j} w_{j,k} \cdot o_{j})}{\partial w_{j,k}} ∂wj,k∂(∑jwj,k⋅oj) 进行求导并代入原式,就从第一个表达式推导出了第二个表达式。

相关推荐
QxQ么么4 小时前
移远通信(桂林)26校招-助理AI算法工程师-面试纪录
人工智能·python·算法·面试
雪碧聊技术6 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java6 小时前
机器学习初级
人工智能·机器学习
Mz12216 小时前
day05 移动零、盛水最多的容器、三数之和
数据结构·算法·leetcode
SoleMotive.6 小时前
如果用户反映页面跳转得非常慢,该如何排查
jvm·数据库·redis·算法·缓存
念越6 小时前
判断两棵二叉树是否相同(力扣)
算法·leetcode·入门
qq_17082750 CNC注塑机数采7 小时前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
黑客思维者7 小时前
LLM底层原理学习笔记:模型评估的基准测试体系与方法论
人工智能·笔记·神经网络·学习·模型评估·基准测试
~~李木子~~7 小时前
中文社交媒体情感分析实战:基于B站评论的机器学习与深度学习对比
深度学习·机器学习·媒体