论文阅读笔记——MAGICDRIVE: STREET VIEW GENERATION WITH DIVERSE 3D GEOMETRY CONTROL

MagicDrive 论文

MagicDrive 通过对 3D 数据和文本数据的多模态条件融合和隐式视角转换,实现了高质量、多视角一致的 3D 场景生成。

几何条件编码

  • Cross-attention:针对顺序数据,适合处理文本标记和边界框等可变长度输入
  • Additive encoder branch:对于地图等网络状规则数据,能够有效保留空间结构

对于文本

按照模版构建:"A driving scene at {location}. {description}",并采用预训练的 CLIP 编码。

对于相机位姿

P = { K ∈ R 3 × 3 , R ∈ R 3 × 3 , T ∈ R 3 × 1 } P = \{K \in R^{3×3}, R \in R^{3×3}, T \in R^{3×1}\} P={K∈R3×3,R∈R3×3,T∈R3×1} ,利用傅里叶变换和 MLP 来对齐文本维度,根据文本模版包含了位置信息,将相机 embeddings 添加到文本 embeddings 之前构建场景 embeddings。
h t = [ h 1 t , ... ... , h L t ] h c = E c a m ( F o u r i e r ( ( ‾ P ) ) ) = E c a m ( F o u r i e r ( [ K , R , T ] T ) ) \begin{aligned} &h^t=[h^t_1,......,h^t_L] \\&h^c=E_{cam}(Fourier(\overline(P)))=E_{cam}(Fourier([K,R,T]^T)) \end{aligned} ht=[h1t,......,hLt]hc=Ecam(Fourier((P)))=Ecam(Fourier([K,R,T]T))

对于 3D 边界框 ( c i , b i ) (c_i,b_i) (ci,bi)

类标签 c i c_i ci 和边界框 b i b_i bi, c i c_i ci 的池化向量被视为标签 embedding,对边界框 b i ∈ R 8 × 3 b_i \in R^{8×3} bi∈R8×3 的 8 个角点,对其用傅里叶编码和 MLP,最后用 MLP 将二者压缩到一个 hidden vector 中。同时由于不同视角的可见框呈现长尾分布,过滤每个视图的可见对象以及添加不可见框的增强。
e c b ( i ) = A v g P o o l ( E t e x t ( L c i ) , e p b ( i ) ) = M L P ( F o u r i e r ( b i ) ) h i b = E b o x ( c i , b i ) = M L P b ( e c b ( i ) , e p b ( i ) ) h v i b = { h i b ∈ h b ∣ f v i z ( b i , R v i , T v i ) > 0 } \begin{aligned} &e_c^b(i)=AvgPool(E_{text}(L_{c_i}), e_p^b(i))=MLP(Fourier(b_i)) \\&h_i^b=E_{box}(c_i,b_i)=MLP_b(e_c^b(i),e_p^b(i)) \\&h_{v_i}^b=\{h_i^b\in h^b|f_{viz}(b_i,R_{v_i},T_{v_i})>0\} \end{aligned} ecb(i)=AvgPool(Etext(Lci),epb(i))=MLP(Fourier(bi))hib=Ebox(ci,bi)=MLPb(ecb(i),epb(i))hvib={hib∈hb∣fviz(bi,Rvi,Tvi)>0}

对于 Road Map

因为有相机位姿和 3D 边界框的数据以及合并文本描述,可以得到隐式的地图编码器而不需要做显示转换(BEV->FPV)。

跨视角注意力机制:

通过一个简单但高效的注意力机制确保了多视角情况下图像的一致性。
A t t e n t i o n c v i ( Q t , K i , V i ) = s o f t m a x ( Q t K i T d ) ⋅ V i , i ∈ l , r h o u t v = h i n v + A t t e n t i o n c v l + A t t e n t i o n c v r \begin{aligned} &Attention_{cv}^i(Q_t,K_i,V_i)=softmax(\frac{Q_tK_i^T}{\sqrt{d}})·V_i,\quad i \in{l,r} \\&h_{out}^v= h_{in}^v+Attention_{cv}^l+Attention_{cv}^r \end{aligned} Attentioncvi(Qt,Ki,Vi)=softmax(d QtKiT)⋅Vi,i∈l,rhoutv=hinv+Attentioncvl+Attentioncvr

实验结果

由表格,可以看到 MagicDrive 的 FID 得到了明显的提升,在 nuScenes 数据集上 NDS 得到了不错的效果。

相关推荐
CV-杨帆1 分钟前
论文阅读:ACL 2024 Stealthy Attack on Large Language Model based Recommendation
论文阅读·人工智能·语言模型
飞哥数智坊1 分钟前
AI 编程太混乱?我的3个实践,防止代码失控
人工智能·ai编程
NMGWAP4 分钟前
AI辅助编程:软件工程的终结还是进化新阶段?
人工智能·软件工程
云边云科技23 分钟前
企业跨区域组网新解:SD-WAN技术打造安全稳定网络体系
运维·网络·人工智能·安全·边缘计算
pingao14137825 分钟前
PG-210-HI 山洪预警系统呼叫端:筑牢山区应急预警 “安全防线”
大数据·人工智能·科技
chenzhiyuan201830 分钟前
YOLO + OpenPLC + ARMxy:工业智能化视觉识别、边缘计算、工业控制的“三位一体”解决方案
人工智能·yolo·边缘计算
大千AI助手1 小时前
粒子群优化(PSO)算法详解:从鸟群行为到强大优化工具
人工智能·算法·优化算法·pso·粒子群优化
新手村领路人1 小时前
飞桨paddlepaddle旧版本2.4.2安装
人工智能·paddlepaddle
Elastic 中国社区官方博客1 小时前
带地图的 RAG:多模态 + 地理空间 在 Elasticsearch 中
大数据·人工智能·elasticsearch·搜索引擎·ai·语言模型·全文检索
云卓SKYDROID1 小时前
无人机云台电压类型及测量方法
人工智能·目标跟踪·无人机·高科技·航线系统