BKA-CNN-GRU、CNN-GRU、GRU、CNN四模型多变量时序预测(Matlab)

BKA-CNN-GRU、CNN-GRU、GRU、CNN四模型多变量时序预测(Matlab)

目录

预测效果





基本介绍

BKA-CNN-GRU、CNN-GRU、GRU、CNN四模型多变量时序光伏功率预测 (Matlab2020b 多输入单输出)

1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!

2.BKA-CNN-GRU、CNN-GRU、GRU、CNN四模型多变量时序光伏功率预测 (Matlab2020b 多输入单输出),考虑历史特征的影响。

BKA优化隐藏层节点数、初始学习率、L2正则化系数。黑翅鸢优化算法(Black-winged kite algorithm,BKA)是一种受自然启发的群智能优化算法,其灵感来源于黑翅鸢(Black-winged kite)这种动物的生存策略。因为黑翅鸢在攻击和迁徙中表现出高度的适应性和智能行为。

3.运行环境要求MATLAB版本为2020b及其以上。

4.评价指标包括:R2、MAE、MSE、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

数据集

程序设计

  • 完整源码和数据获取方式私信回复BKA-CNN-GRU、CNN-GRU、GRU、CNN四模型多变量时序预测(Matlab),附模型报告。
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
蹦蹦跳跳真可爱5897 小时前
Python----目标检测(《用于精确目标检测和语义分割的丰富特征层次结构》和R-CNN)
人工智能·python·深度学习·神经网络·目标检测·cnn
机器学习之心11 小时前
分类预测 | Matlab实现CNN-LSTM-Attention高光谱数据分类
matlab·attention·cnn-lstm-att·高光谱数据分类
三三十二14 小时前
MATLAB实战:机器学习分类回归示例
机器学习·matlab·分类·回归
mirandali16 小时前
simulink mask、sfunction和tlc的联动、接口
matlab·simulink·tlc
fie888916 小时前
matlab全息技术中的菲涅尔仿真成像
人工智能·算法·matlab
showmethetime16 小时前
wolf法计算最大李雅普诺夫指数
前端·人工智能·matlab
三三十二17 小时前
MATLAB实战:人脸检测与识别实现方案
开发语言·算法·matlab
pen-ai18 小时前
【深度学习】14. DL在CV中的应用章:目标检测: R-CNN, Fast R-CNN, Faster R-CNN, MASK R-CNN
深度学习·目标检测·cnn
蹦蹦跳跳真可爱58919 小时前
Python----目标检测(《基于区域提议网络的实时目标检测方法》和Faster R-CNN)
人工智能·python·深度学习·神经网络·目标检测·机器学习·cnn
bubiyoushang8881 天前
matlab雷达定位仿真
开发语言·matlab