BKA-CNN-GRU、CNN-GRU、GRU、CNN四模型多变量时序预测(Matlab)

BKA-CNN-GRU、CNN-GRU、GRU、CNN四模型多变量时序预测(Matlab)

目录

预测效果





基本介绍

BKA-CNN-GRU、CNN-GRU、GRU、CNN四模型多变量时序光伏功率预测 (Matlab2020b 多输入单输出)

1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!

2.BKA-CNN-GRU、CNN-GRU、GRU、CNN四模型多变量时序光伏功率预测 (Matlab2020b 多输入单输出),考虑历史特征的影响。

BKA优化隐藏层节点数、初始学习率、L2正则化系数。黑翅鸢优化算法(Black-winged kite algorithm,BKA)是一种受自然启发的群智能优化算法,其灵感来源于黑翅鸢(Black-winged kite)这种动物的生存策略。因为黑翅鸢在攻击和迁徙中表现出高度的适应性和智能行为。

3.运行环境要求MATLAB版本为2020b及其以上。

4.评价指标包括:R2、MAE、MSE、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

数据集

程序设计

  • 完整源码和数据获取方式私信回复BKA-CNN-GRU、CNN-GRU、GRU、CNN四模型多变量时序预测(Matlab),附模型报告。
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
Billy_Zuo3 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
IT古董3 天前
【第五章:计算机视觉-项目实战之图像分类实战】1.经典卷积神经网络模型Backbone与图像-(4)经典卷积神经网络ResNet的架构讲解
人工智能·计算机视觉·cnn
兔子不吃草~4 天前
Transformer学习记录与CNN思考
学习·cnn·transformer
tyatyatya4 天前
MATLAB中进行视觉检测入门教程
开发语言·matlab·视觉检测
孤心亦暖4 天前
RNN,GRU和LSTM的简单实现
rnn·gru·lstm
Morning的呀4 天前
Class48 GRU
人工智能·深度学习·gru
2zcode4 天前
基于Matlab可见光通信系统中OOK调制的误码率性能建模与分析
算法·matlab·php
听情歌落俗5 天前
MATLAB3-1变量-台大郭彦甫
开发语言·笔记·算法·matlab·矩阵
似乎很简单5 天前
卷积神经网络(CNN)
深度学习·神经网络·cnn
XIAOYU6720135 天前
金融数学专业需要学哪些数学和编程内容?
开发语言·matlab·金融