跟着StatQuest学知识08-RNN与LSTM

一、RNN

(一)简介

整个过程权重和偏置共享。

(二)梯度爆炸问题

在这个例子中w2大于1,会出现梯度爆炸问题。

当我们循环的次数越来越多的时候,这个巨大的数字会进入某些梯度,步长就会大幅增加 ,导致寻找最佳参数困难。另外会导致第一个输入的值影响越来越显著

(三)梯度消失问题

在这个例子中w2小于1,会出现梯度消失问题。

当我们循环的次数越来越多的时候,这个非常的数字会进入某些梯度,步长就会大幅减小,导致寻找最佳参数困难。

二、长短期记忆网络LSTM

(一)主要思想

不使用相同的反馈环连接,通过很久以前的事情和昨天的事情进行预测。而是使用两条独立的路径来对明天预测,一条用于长期记忆,另一条用于短期记忆。

(二)Sigmoid激活函数

(三)Tanh激活函数

(四)原理

第一阶段**"遗忘门"** :确定记住旧长期记忆的百分比,得出长期记忆值。

第二阶段:"输入门"

右边模块:将短期记忆和输入结合(权重×数值),创建潜在的长期记忆。旧长期记忆+潜在的长期记忆 = 新的长期记忆

左边模块:确定这个潜在记忆中的权重。

第三阶段**"输出门"** :更新短期记忆。( 新长期通过激活函数计算潜在短期数值,再×权重 = 新的短期记忆)

具体表现请看:【官方双语】LSTM(长短期记忆神经网络)最简单清晰的解释来了! 第14:30处。

为什么通过LSTM能解决梯度爆炸和梯度消失的问题?

相关推荐
Work(沉淀版)1 小时前
DAY 40
人工智能·深度学习·机器学习
蓦然回首却已人去楼空2 小时前
Build a Large Language Model (From Scratch) 序章
人工智能·语言模型·自然语言处理
CM莫问2 小时前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
拾忆-eleven2 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5163 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
要努力啊啊啊3 小时前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
mzlogin5 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮5 小时前
知识图谱技术概述
大数据·人工智能·知识图谱
就是有点傻6 小时前
VM图像处理之图像二值化
图像处理·人工智能·计算机视觉
行云流水剑6 小时前
【学习记录】深入解析 AI 交互中的五大核心概念:Prompt、Agent、MCP、Function Calling 与 Tools
人工智能·学习·交互