Spark,hadoop的组成

(一)Hadoop的组成

对普通用户来说, Hadoop就是一个东西,一个整体,它能给我们提供无限的磁盘用来保存文件,可以使用提供强大的计算能力。

在Hadoop3.X中,hadoop一共有三个组成部分:MapReduce,Yarn,HDFS。它们的作用如下:

MapReduce: 用来提供计算。

HDFS: 用来提供文件存储功能。

Yarn: 用来协调调度。

(二)HDFS

Hadoop Distributed File System, 简称HDFS,是一个分布式文件系统。在hadoop体系中,它用来存储文件。

例如,当我们把一个文件(例如500M),保存到hadoop中时,它的背后要实现两个效果:

如果文件较大(>128M)把大文件拆小,并分别传输。

存储3份在不同的主机上。

在它的内部,有三个角色,分别如下:

(1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间,副本数,文件权限),以及每个文件的块列表和块所在的DataNode等。

(2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。

(3)Secondary NameNode(2nn): 每隔一段时间对NameNode元数据备份。

HDFS集群:一主加三从,额外再配一个小秘书

(三)YARN

Yet Another Resource Negotiator,简称YARN,另一种资源协调者,是Hadoop的资源管理器。

(1)ResourceManager(RM):整个集群资源(内存,CPU等)的管理者

(2)NodeManager(NM): 单个节点服务器资源的管理者

Yarn和HDFS的关系说明:逻辑上分离,物理上在一起。

逻辑上分离:不是说非要启动HDFS集群才能启动YARN集群,不是先有哪个再有哪个?每个框都是一个进程,可能都运行在一台主机上,但是,属于不同的集群。

物理上在一起:每一台机器上都有NN, NM。

(四)MapReduce

MapReduce用来提供计算的能力。它将计算过程分为两个阶段:Map和Reduce。

(1)Map阶段并行处理输入数据

(2)Reduce阶段对Map结果进行汇总

相关推荐
计算机毕设-小月哥4 小时前
完整源码+技术文档!基于Hadoop+Spark的鲍鱼生理特征大数据分析系统免费分享
大数据·hadoop·spark·numpy·pandas·计算机毕业设计
zhang98800001 天前
储能领域大数据平台的设计中如何使用 Hadoop、Spark、Flink 等组件实现数据采集、清洗、存储及实时 / 离线计算,支持储能系统分析与预测
大数据·hadoop·spark
数据慢想1 天前
从2小时到3分钟:Spark SQL多维分析性能优化实战
spark
计算机毕设残哥3 天前
完整技术栈分享:基于Hadoop+Spark的在线教育投融资大数据可视化分析系统
大数据·hadoop·python·信息可视化·spark·计算机毕设·计算机毕业设计
计算机源码社4 天前
分享一个基于Hadoop+spark的超市销售数据分析与可视化系统,超市顾客消费行为分析系统的设计与实现
大数据·hadoop·数据分析·spark·计算机毕业设计源码·计算机毕设选题·大数据选题推荐
码界筑梦坊4 天前
135-基于Spark的抖音数据分析热度预测系统
大数据·python·数据分析·spark·毕业设计·echarts
计算机毕业设计木哥4 天前
计算机毕设大数据选题推荐 基于spark+Hadoop+python的贵州茅台股票数据分析系统【源码+文档+调试】
大数据·hadoop·python·计算机网络·spark·课程设计
请提交用户昵称5 天前
Spark运行架构
大数据·架构·spark
计算机毕业设计木哥5 天前
基于大数据spark的医用消耗选品采集数据可视化分析系统【Hadoop、spark、python】
大数据·hadoop·python·信息可视化·spark·课程设计
卖寂寞的小男孩5 天前
Spark执行计划与UI分析
ui·ajax·spark