Spark,hadoop的组成

(一)Hadoop的组成

对普通用户来说, Hadoop就是一个东西,一个整体,它能给我们提供无限的磁盘用来保存文件,可以使用提供强大的计算能力。

在Hadoop3.X中,hadoop一共有三个组成部分:MapReduce,Yarn,HDFS。它们的作用如下:

MapReduce: 用来提供计算。

HDFS: 用来提供文件存储功能。

Yarn: 用来协调调度。

(二)HDFS

Hadoop Distributed File System, 简称HDFS,是一个分布式文件系统。在hadoop体系中,它用来存储文件。

例如,当我们把一个文件(例如500M),保存到hadoop中时,它的背后要实现两个效果:

如果文件较大(>128M)把大文件拆小,并分别传输。

存储3份在不同的主机上。

在它的内部,有三个角色,分别如下:

(1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间,副本数,文件权限),以及每个文件的块列表和块所在的DataNode等。

(2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。

(3)Secondary NameNode(2nn): 每隔一段时间对NameNode元数据备份。

HDFS集群:一主加三从,额外再配一个小秘书

(三)YARN

Yet Another Resource Negotiator,简称YARN,另一种资源协调者,是Hadoop的资源管理器。

(1)ResourceManager(RM):整个集群资源(内存,CPU等)的管理者

(2)NodeManager(NM): 单个节点服务器资源的管理者

Yarn和HDFS的关系说明:逻辑上分离,物理上在一起。

逻辑上分离:不是说非要启动HDFS集群才能启动YARN集群,不是先有哪个再有哪个?每个框都是一个进程,可能都运行在一台主机上,但是,属于不同的集群。

物理上在一起:每一台机器上都有NN, NM。

(四)MapReduce

MapReduce用来提供计算的能力。它将计算过程分为两个阶段:Map和Reduce。

(1)Map阶段并行处理输入数据

(2)Reduce阶段对Map结果进行汇总

相关推荐
绿算技术1 天前
绿算GP Spark引爆关注,成为AI工厂存储利器
大数据·人工智能·spark
uesowys2 天前
Apache Spark算法开发指导-特征转换Interaction
spark·特征转换interaction
扫地的小何尚2 天前
AI创新的火花:NVIDIA DGX Spark开箱与深度解析
大数据·人工智能·spark·llm·gpu·nvidia·dgx
B站_计算机毕业设计之家2 天前
spark实战:python股票数据分析可视化系统 Flask框架 金融数据分析 Echarts可视化 大数据技术 ✅
大数据·爬虫·python·金融·数据分析·spark·股票
可惜我是水瓶座__2 天前
[Spark] TaskMetrics指标收集
spark·1024程序员节
hzp6662 天前
spark动态分区参数spark.sql.sources.partitionOverwriteMode
大数据·hive·分布式·spark·etl·partitionover
菜鸡儿齐4 天前
spark组件-spark sql-读取数据
大数据·sql·spark
GitCode官方5 天前
科大讯飞星火科技文献大模型 Spark-Scilit-X1-13B 在 GitCode 开源,助力科研智能化革新!
科技·spark·gitcode
想ai抽5 天前
大数据计算引擎-从源码看Spark AQE对于倾斜的处理
大数据·数据仓库·spark
菜鸡儿齐5 天前
spark组件-spark core(批处理)-rdd创建
大数据·分布式·spark