Spark,hadoop的组成

(一)Hadoop的组成

对普通用户来说, Hadoop就是一个东西,一个整体,它能给我们提供无限的磁盘用来保存文件,可以使用提供强大的计算能力。

在Hadoop3.X中,hadoop一共有三个组成部分:MapReduce,Yarn,HDFS。它们的作用如下:

MapReduce: 用来提供计算。

HDFS: 用来提供文件存储功能。

Yarn: 用来协调调度。

(二)HDFS

Hadoop Distributed File System, 简称HDFS,是一个分布式文件系统。在hadoop体系中,它用来存储文件。

例如,当我们把一个文件(例如500M),保存到hadoop中时,它的背后要实现两个效果:

如果文件较大(>128M)把大文件拆小,并分别传输。

存储3份在不同的主机上。

在它的内部,有三个角色,分别如下:

(1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间,副本数,文件权限),以及每个文件的块列表和块所在的DataNode等。

(2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。

(3)Secondary NameNode(2nn): 每隔一段时间对NameNode元数据备份。

HDFS集群:一主加三从,额外再配一个小秘书

(三)YARN

Yet Another Resource Negotiator,简称YARN,另一种资源协调者,是Hadoop的资源管理器。

(1)ResourceManager(RM):整个集群资源(内存,CPU等)的管理者

(2)NodeManager(NM): 单个节点服务器资源的管理者

Yarn和HDFS的关系说明:逻辑上分离,物理上在一起。

逻辑上分离:不是说非要启动HDFS集群才能启动YARN集群,不是先有哪个再有哪个?每个框都是一个进程,可能都运行在一台主机上,但是,属于不同的集群。

物理上在一起:每一台机器上都有NN, NM。

(四)MapReduce

MapReduce用来提供计算的能力。它将计算过程分为两个阶段:Map和Reduce。

(1)Map阶段并行处理输入数据

(2)Reduce阶段对Map结果进行汇总

相关推荐
yumgpkpm21 小时前
基于GPU的Spark应用加速 Cloudera CDP/华为CMP鲲鹏版+Nvidia英伟达联合解决方案
大数据·数据库·人工智能·hadoop·elasticsearch·spark·cloudera
鸿乃江边鸟21 小时前
Spark Datafusion Comet 向量化--ApplyColumnarRulesAndInsertTransitions规则
大数据·spark·native
飞Link1 天前
【大数据】SparkSQL常用操作
大数据·数据挖掘·spark
浊酒南街2 天前
SUBSTRING_INDEX 函数介绍
sql·spark
鸿乃江边鸟2 天前
Spark datafusion comet向量化插件CometPlugin
大数据·spark·native
oMcLin2 天前
如何在 Debian 11 上通过构建大数据湖,使用 Apache Spark 加速电商平台的数据分析与实时推荐引擎
spark·debian·apache
Lansonli2 天前
大数据Spark(七十六):Action行动算子reduce和take、takeSample使用案例
大数据·分布式·spark
鸿乃江边鸟2 天前
Apache Arrow的零拷贝是指什么
spark·零拷贝·native·arrow
Light603 天前
智链护航,数档永存:基于领码SPARK平台构建下一代AI+区块链档案系统解决方案
人工智能·spark·区块链
鸿乃江边鸟3 天前
Spark native向量化组件 datafusion comet
大数据·spark·native·向量化