一.问题描述
01背包问题是一个经典的组合优化问题,属于动态规划算法的典型应用场景。其问题描述如下: 有一个容量为C的背包,以及 n 个物品,每个物品都有重量w[i] 和价值 v[i]。要求在有限的背包容量下选择一些物品放入背包,使得放入背包的物品总价值最大,且放入物品的总重量不能超过背包的容量。同时,对于每个物品,只能选择放入背包或者不放入背包,即每个物品只有两种状态,这也是"01"背包名称的由来。
例如,有一个容量为5的背包,有3个物品,分别是重量为2、价值为3的物品1,重量为3、价值为4的物品2,以及重量为1、价值为2的物品3。如何选择物品放入背包,才能使背包内物品的总价值最大呢?这就是01背包问题需要解决的。


Coding:
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n, bagweight;// bagweight代表行李箱空间
cin >> n >> bagweight;
vector<int> weight(n, 0); // 存储每件物品所占空间
vector<int> value(n, 0); // 存储每件物品价值
for (int i = 0; i < n; ++i) {
cin >> weight[i];
}
for (int j = 0; j < n; ++j) {
cin >> value[j];
}
// dp数组, dp[i][j]代表行李箱空间为j的情况下,从下标为[0, i]的物品里面任意取,能达到的最大价值
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
// 初始化, 因为需要用到dp[i - 1]的值
// j < weight[0]已在上方被初始化为0
// j >= weight[0]的值就初始化为value[0]
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
for (int i = 1; i < weight.size(); i++) { // 遍历科研物品
for (int j = 0; j <= bagweight; j++) { // 遍历行李箱容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j]; // 如果装不下这个物品,那么就继承dp[i - 1][j]的值
else {
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
}
cout << dp[n - 1][bagweight] << endl;
return 0;
}