[leetcode]01背包问题

一.问题描述

01背包问题是一个经典的组合优化问题,属于动态规划算法的典型应用场景。其问题描述如下: 有一个容量为C的背包,以及 n 个物品,每个物品都有重量w[i] 和价值 v[i]。要求在有限的背包容量下选择一些物品放入背包,使得放入背包的物品总价值最大,且放入物品的总重量不能超过背包的容量。同时,对于每个物品,只能选择放入背包或者不放入背包,即每个物品只有两种状态,这也是"01"背包名称的由来。

例如,有一个容量为5的背包,有3个物品,分别是重量为2、价值为3的物品1,重量为3、价值为4的物品2,以及重量为1、价值为2的物品3。如何选择物品放入背包,才能使背包内物品的总价值最大呢?这就是01背包问题需要解决的。

Coding:

#include <bits/stdc++.h>

using namespace std;

int main()

{

int n, bagweight;// bagweight代表行李箱空间

cin >> n >> bagweight;

vector<int> weight(n, 0); // 存储每件物品所占空间

vector<int> value(n, 0); // 存储每件物品价值

for (int i = 0; i < n; ++i) {

cin >> weight[i];

}

for (int j = 0; j < n; ++j) {

cin >> value[j];

}

// dp数组, dp[i][j]代表行李箱空间为j的情况下,从下标为[0, i]的物品里面任意取,能达到的最大价值

vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));

// 初始化, 因为需要用到dp[i - 1]的值

// j < weight[0]已在上方被初始化为0

// j >= weight[0]的值就初始化为value[0]

for (int j = weight[0]; j <= bagweight; j++) {

dp[0][j] = value[0];

}

for (int i = 1; i < weight.size(); i++) { // 遍历科研物品

for (int j = 0; j <= bagweight; j++) { // 遍历行李箱容量

if (j < weight[i]) dp[i][j] = dp[i - 1][j]; // 如果装不下这个物品,那么就继承dp[i - 1][j]的值

else {

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

}

}

}

cout << dp[n - 1][bagweight] << endl;

return 0;

}

相关推荐
Gyoku Mint2 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
葫三生3 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
拓端研究室5 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
随缘而动,随遇而安7 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
IT古董8 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
Alfred king10 小时前
面试150 生命游戏
leetcode·游戏·面试·数组
水木兰亭11 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
June bug11 小时前
【软考中级·软件评测师】下午题·面向对象测试之架构考点全析:分层、分布式、微内核与事件驱动
经验分享·分布式·职场和发展·架构·学习方法·测试·软考
Jess0712 小时前
插入排序的简单介绍
数据结构·算法·排序算法
老一岁12 小时前
选择排序算法详解
数据结构·算法·排序算法