(四)机器学习---逻辑回归及其Python实现

之前我们提到了常见的任务和算法,本篇我们使用逻辑回归 来进行分类

分类问题 回归问题 聚类问题 各种复杂问题
决策树√ 线性回归√ K-means√ 神经网络√
逻辑回归√ 岭回归 密度聚类 深度学习√
集成学习√ Lasso回归 谱聚类 条件随机场
贝叶斯 层次聚类 隐马尔可夫模型
支持向量机 高斯混合聚类 LDA主题模型

目录

一.分类问题

二.逻辑回归的基本原理

(1)逻辑回归

(2)逻辑回归模型的参数学习

(3)逻辑回归模型的决策边界

(4)应用案例:银行贷款审批

(5)小结

三.基于Scikit-learn实现逻辑回归

(1)Python支持的逻辑回归实现

(2)逻辑回归应用案例实现

(3)用逻辑回归实现多元分类

(4)机器学习一般流程总结

四.分类模型的性能评估

(1)平衡问题分类模型的性能评估

(2)非平衡问题分类模型的性能评估

(3)小结


一.分类问题

分类是将样本划分到已知的目标类中。它从数据中学习一个分类决策函数或分类模型(也称为分类器classifier),判断新的未知数据的类别 。分类问题的目标不是连续值,而是有限个离散值,即类别。

这时我们想知道,线性回归的方法可以解决我们的分类问题吗?

但是如果点的分布更复杂,如右下角又多出一些点(图3),从图中看原来的分割线依然有效。但新的回归训练得到的分割线将如图4紫色线所示。已有的点有明显的分类错误,无法在现有训练集上得到好的线性分类函数。

所以我们需要一个分类算法来处理这类问题,也就是我们的逻辑回归


二.逻辑回归的基本原理

(1)逻辑回归

逻辑回归是一种监督学习算法。通过对有标记的样本数据进行学习,获得一个二分类决策函数,用来预测未知数据的类别。

sigmoid函数可以将负无穷到正无穷的自变量的值得计算结果,映射到0到1的值

所以说先线性回归再逻辑回归,最后再进行判断的决策。

(2)逻辑回归模型的参数学习

(3)逻辑回归模型的决策边界

而这里的b+w1x1+w2x2 = 0,就是可以看作进行逻辑学习后得到的决策边界。

(4)应用案例:银行贷款审批

(5)小结


三.基于Scikit-learn实现逻辑回归

(1)Python支持的逻辑回归实现

(2)逻辑回归应用案例实现

(3)用逻辑回归实现多元分类

(4)机器学习一般流程总结


四.分类模型的性能评估

(1)平衡问题分类模型的性能评估

接下来我们用代码来实现 :

(2)非平衡问题分类模型的性能评估

(3)小结

相关推荐
加油吧zkf9 分钟前
水下目标检测:突破与创新
人工智能·计算机视觉·目标跟踪
加油吧zkf9 分钟前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
t_hj10 分钟前
python规划
python
峙峙峙22 分钟前
线性代数--AI数学基础复习
人工智能·线性代数
czhc114007566326 分钟前
Linux 76 rsync
linux·运维·python
weiwuxian27 分钟前
揭开智能体的神秘面纱:原来你不是"超级AI"!
人工智能
Codebee28 分钟前
“自举开发“范式:OneCode如何用低代码重构自身工具链
java·人工智能·架构
说私域40 分钟前
基于开源AI智能名片链动2+1模式的S2B2C商城小程序:门店私域流量与视频号直播融合的生态创新研究
人工智能·小程序·开源
Ronin-Lotus42 分钟前
深度学习篇---Yolov系列
人工智能·深度学习
weixin_4461224644 分钟前
LinkedList剖析
算法