(四)机器学习---逻辑回归及其Python实现

之前我们提到了常见的任务和算法,本篇我们使用逻辑回归 来进行分类

分类问题 回归问题 聚类问题 各种复杂问题
决策树√ 线性回归√ K-means√ 神经网络√
逻辑回归√ 岭回归 密度聚类 深度学习√
集成学习√ Lasso回归 谱聚类 条件随机场
贝叶斯 层次聚类 隐马尔可夫模型
支持向量机 高斯混合聚类 LDA主题模型

目录

一.分类问题

二.逻辑回归的基本原理

(1)逻辑回归

(2)逻辑回归模型的参数学习

(3)逻辑回归模型的决策边界

(4)应用案例:银行贷款审批

(5)小结

三.基于Scikit-learn实现逻辑回归

(1)Python支持的逻辑回归实现

(2)逻辑回归应用案例实现

(3)用逻辑回归实现多元分类

(4)机器学习一般流程总结

四.分类模型的性能评估

(1)平衡问题分类模型的性能评估

(2)非平衡问题分类模型的性能评估

(3)小结


一.分类问题

分类是将样本划分到已知的目标类中。它从数据中学习一个分类决策函数或分类模型(也称为分类器classifier),判断新的未知数据的类别 。分类问题的目标不是连续值,而是有限个离散值,即类别。

这时我们想知道,线性回归的方法可以解决我们的分类问题吗?

但是如果点的分布更复杂,如右下角又多出一些点(图3),从图中看原来的分割线依然有效。但新的回归训练得到的分割线将如图4紫色线所示。已有的点有明显的分类错误,无法在现有训练集上得到好的线性分类函数。

所以我们需要一个分类算法来处理这类问题,也就是我们的逻辑回归


二.逻辑回归的基本原理

(1)逻辑回归

逻辑回归是一种监督学习算法。通过对有标记的样本数据进行学习,获得一个二分类决策函数,用来预测未知数据的类别。

sigmoid函数可以将负无穷到正无穷的自变量的值得计算结果,映射到0到1的值

所以说先线性回归再逻辑回归,最后再进行判断的决策。

(2)逻辑回归模型的参数学习

(3)逻辑回归模型的决策边界

而这里的b+w1x1+w2x2 = 0,就是可以看作进行逻辑学习后得到的决策边界。

(4)应用案例:银行贷款审批

(5)小结


三.基于Scikit-learn实现逻辑回归

(1)Python支持的逻辑回归实现

(2)逻辑回归应用案例实现

(3)用逻辑回归实现多元分类

(4)机器学习一般流程总结


四.分类模型的性能评估

(1)平衡问题分类模型的性能评估

接下来我们用代码来实现 :

(2)非平衡问题分类模型的性能评估

(3)小结

相关推荐
ihan是我3 分钟前
ubnuntu使用conda进行虚拟环境迁移,复制,克隆
开发语言·python·conda
兄弟加油,别颓废了。1 小时前
Python基本环境搭配
python
Faylynn4 小时前
AI入门:Prompt提示词写法
人工智能·ai·prompt
纪元A梦4 小时前
华为OD机试真题——荒岛求生(2025A卷:200分)Java/python/JavaScript/C/C++/GO最佳实现
java·c语言·javascript·c++·python·华为od·go
___Dream5 小时前
【TF-BERT】基于张量的融合BERT多模态情感分析
人工智能·深度学习·bert
Jamence5 小时前
多模态大语言模型arxiv论文略读(六十三)
人工智能·语言模型·自然语言处理
Mi Manchi266 小时前
力扣热题100之搜索二维矩阵 II
python·leetcode·矩阵
hkNaruto6 小时前
【AI】Ubuntu 22.04 evalscope 模型评测 Qwen3-4B-FP8
人工智能·ubuntu·qwen3
Kidddddult6 小时前
力扣刷题Day 37:LRU 缓存(146)
算法·leetcode·力扣
电商数据girl6 小时前
【Python爬虫电商数据采集+数据分析】采集电商平台数据信息,并做可视化演示
java·开发语言·数据库·爬虫·python·数据分析