(四)机器学习---逻辑回归及其Python实现

之前我们提到了常见的任务和算法,本篇我们使用逻辑回归 来进行分类

分类问题 回归问题 聚类问题 各种复杂问题
决策树√ 线性回归√ K-means√ 神经网络√
逻辑回归√ 岭回归 密度聚类 深度学习√
集成学习√ Lasso回归 谱聚类 条件随机场
贝叶斯 层次聚类 隐马尔可夫模型
支持向量机 高斯混合聚类 LDA主题模型

目录

一.分类问题

二.逻辑回归的基本原理

(1)逻辑回归

(2)逻辑回归模型的参数学习

(3)逻辑回归模型的决策边界

(4)应用案例:银行贷款审批

(5)小结

三.基于Scikit-learn实现逻辑回归

(1)Python支持的逻辑回归实现

(2)逻辑回归应用案例实现

(3)用逻辑回归实现多元分类

(4)机器学习一般流程总结

四.分类模型的性能评估

(1)平衡问题分类模型的性能评估

(2)非平衡问题分类模型的性能评估

(3)小结


一.分类问题

分类是将样本划分到已知的目标类中。它从数据中学习一个分类决策函数或分类模型(也称为分类器classifier),判断新的未知数据的类别 。分类问题的目标不是连续值,而是有限个离散值,即类别。

这时我们想知道,线性回归的方法可以解决我们的分类问题吗?

但是如果点的分布更复杂,如右下角又多出一些点(图3),从图中看原来的分割线依然有效。但新的回归训练得到的分割线将如图4紫色线所示。已有的点有明显的分类错误,无法在现有训练集上得到好的线性分类函数。

所以我们需要一个分类算法来处理这类问题,也就是我们的逻辑回归


二.逻辑回归的基本原理

(1)逻辑回归

逻辑回归是一种监督学习算法。通过对有标记的样本数据进行学习,获得一个二分类决策函数,用来预测未知数据的类别。

sigmoid函数可以将负无穷到正无穷的自变量的值得计算结果,映射到0到1的值

所以说先线性回归再逻辑回归,最后再进行判断的决策。

(2)逻辑回归模型的参数学习

(3)逻辑回归模型的决策边界

而这里的b+w1x1+w2x2 = 0,就是可以看作进行逻辑学习后得到的决策边界。

(4)应用案例:银行贷款审批

(5)小结


三.基于Scikit-learn实现逻辑回归

(1)Python支持的逻辑回归实现

(2)逻辑回归应用案例实现

(3)用逻辑回归实现多元分类

(4)机器学习一般流程总结


四.分类模型的性能评估

(1)平衡问题分类模型的性能评估

接下来我们用代码来实现 :

(2)非平衡问题分类模型的性能评估

(3)小结

相关推荐
a努力。5 分钟前
国家电网Java面试被问:最小生成树的Kruskal和Prim算法
java·后端·算法·postgresql·面试·linq
知行合一。。。6 分钟前
Python--03--函数入门
android·数据库·python
竹君子7 分钟前
AIDC知识库(3)英伟达Rubin 架构对未来AIDC方案的影响初探
人工智能
洛生&11 分钟前
Counting Towers
算法
棒棒的皮皮15 分钟前
【深度学习】YOLO模型速度优化全攻略(模型 / 推理 / 硬件三层维度)
人工智能·深度学习·yolo·计算机视觉
线束线缆组件品替网16 分钟前
Amphenol RF 同轴线缆:高频 RF 系统设计中 VSWR 与损耗控制实践
网络·人工智能·电脑·硬件工程·材料工程
Evand J20 分钟前
【MATLAB例程,附代码下载链接】基于累积概率的三维轨迹,概率计算与定位,由轨迹匹配和滤波带来高精度位置,带测试结果演示
开发语言·算法·matlab·csdn·轨迹匹配·候选轨迹·完整代码
-曾牛21 分钟前
Yak语言核心基础:语句、变量与表达式详解
数据库·python·网络安全·golang·渗透测试·安全开发·yak
X在敲AI代码23 分钟前
LeetCode 基础刷题D2
算法·leetcode·职场和发展
源代码•宸27 分钟前
Leetcode—1929. 数组串联&&Q1. 数组串联【简单】
经验分享·后端·算法·leetcode·go