【概率论】条件期望

在高等概率论中,给定一个概率空间 ( Ω , F , P ) (\Omega, \mathcal{F}, P) (Ω,F,P) 和其子 σ \sigma σ-代数 G ⊆ F \mathcal{G} \subseteq \mathcal{F} G⊆F,随机变量 X X X 关于 G \mathcal{G} G 的 条件期望 E [ X ∣ G ] E[X|\mathcal{G}] E[X∣G] 是一个满足以下两个条件的随机变量:

  1. G \mathcal{G} G-可测性 : E [ X ∣ G ] \mathbb{E}[X|\mathcal{G}] E[X∣G] 是 G \mathcal{G} G-可测的函数。
  2. 积分等式 :对任意 A ∈ G A \in \mathcal{G} A∈G,有
    ∫ A E [ X ∣ G ]   d P = ∫ A X   d P . \int_A \mathbb{E}[X|\mathcal{G}] \, dP = \int_A X \, dP. ∫AE[X∣G]dP=∫AXdP.

关键点解析:

存在性与唯一性 :由Radon-Nikodym定理保证, E [ X ∣ G ] \mathbb{E}[X|\mathcal{G}] E[X∣G] 在几乎必然意义下唯一存在。

直观意义 : E [ X ∣ G ] \mathbb{E}[X|\mathcal{G}] E[X∣G] 是在已知 G \mathcal{G} G 所包含的信息(即 G \mathcal{G} G-可测事件)时,对 X X X 的"最佳预测"。

特例 :若 G = σ ( Y ) \mathcal{G} = \sigma(Y) G=σ(Y) 由另一个随机变量生成,则 E [ X ∣ G ] \mathbb{E}[X|\mathcal{G}] E[X∣G] 可记为 E [ X ∣ Y ] \mathbb{E}[X|Y] E[X∣Y],表示给定 Y Y Y 时 X X X 的期望。

与其他定义的关联:

• 若 ( X , Y ) (X,Y) (X,Y) 有联合密度 f ( x , y ) f(x,y) f(x,y),则 E [ X ∣ Y = y ] = ∫ x f ( x ∣ y ) d x = ∫ x f ( x , y ) d x ∫ f ( x , y ) d x \mathbb{E}[X|Y=y] = \int x f(x|y) dx=\frac{\int x f(x,y) dx}{\int f(x,y) dx} E[X∣Y=y]=∫xf(x∣y)dx=∫f(x,y)dx∫xf(x,y)dx,其中 f ( x ∣ y ) f(x|y) f(x∣y) 为条件密度。测度论定义将此推广到更一般的场景,因此条件期望 E [ X ∣ Y = y ] \mathbb{E}[X|Y=y] E[X∣Y=y] 是关于 y y y 的函数。

性质:

条件期望具有线性性、单调性、塔性质(迭代期望)等,例如:

线性性 : E [ a X + b Y ∣ G ] = a E [ X ∣ G ] + b E [ Y ∣ G ] \mathbb{E}[aX + bY | \mathcal{G}] = a\mathbb{E}[X|\mathcal{G}] + b\mathbb{E}[Y|\mathcal{G}] E[aX+bY∣G]=aE[X∣G]+bE[Y∣G]。

塔性质 :若 H ⊆ G \mathcal{H} \subseteq \mathcal{G} H⊆G,则 E [ E [ X ∣ G ] ∣ H ] = E [ E [ X ∣ H ] ∣ G ] = E [ X ∣ H ] \mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] =\mathbb{E}[\mathbb{E}[X|\mathcal{H}]|\mathcal{G}] = \mathbb{E}[X|\mathcal{H}] E[E[X∣G]∣H]=E[E[X∣H]∣G]=E[X∣H]。

数学期望与条件期望 E [ E [ X ∣ G ] ] = E [ X ] \mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X] E[E[X∣G]]=E[X]。

相关推荐
金色光环4 天前
切比雪夫不等式的理解以及推导【超详细笔记】
概率论
幻风_huanfeng5 天前
人工智能之数学基础:概率论和数理统计在机器学习的地位
人工智能·神经网络·线性代数·机器学习·概率论
点云SLAM6 天前
海森矩阵(Hessian Matrix)在SLAM图优化和点云配准中的应用介绍
算法·机器学习·矩阵·机器人·概率论·最小二乘法·数值优化
港港胡说11 天前
概率论-独立同分布
概率论
F_D_Z13 天前
【EM算法】三硬币模型
算法·机器学习·概率论·em算法·极大似然估计
金色光环16 天前
概率论:理解区间估计【超详细笔记】
笔记·数学·概率论·数理统计·区间估计
微小冷22 天前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
软件开发技术深度爱好者22 天前
概率中“都发生”和“至少一个”问题的解答
概率论·数学广角
FF-Studio24 天前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
如果你想拥有什么先让自己配得上拥有1 个月前
概率论中的生日问题,违背直觉?如何计算? 以及从人性金融的角度分析如何违背直觉的?
金融·概率论