【概率论】条件期望

在高等概率论中,给定一个概率空间 ( Ω , F , P ) (\Omega, \mathcal{F}, P) (Ω,F,P) 和其子 σ \sigma σ-代数 G ⊆ F \mathcal{G} \subseteq \mathcal{F} G⊆F,随机变量 X X X 关于 G \mathcal{G} G 的 条件期望 E [ X ∣ G ] E[X|\mathcal{G}] E[X∣G] 是一个满足以下两个条件的随机变量:

  1. G \mathcal{G} G-可测性 : E [ X ∣ G ] \mathbb{E}[X|\mathcal{G}] E[X∣G] 是 G \mathcal{G} G-可测的函数。
  2. 积分等式 :对任意 A ∈ G A \in \mathcal{G} A∈G,有
    ∫ A E [ X ∣ G ]   d P = ∫ A X   d P . \int_A \mathbb{E}[X|\mathcal{G}] \, dP = \int_A X \, dP. ∫AE[X∣G]dP=∫AXdP.

关键点解析:

存在性与唯一性 :由Radon-Nikodym定理保证, E [ X ∣ G ] \mathbb{E}[X|\mathcal{G}] E[X∣G] 在几乎必然意义下唯一存在。

直观意义 : E [ X ∣ G ] \mathbb{E}[X|\mathcal{G}] E[X∣G] 是在已知 G \mathcal{G} G 所包含的信息(即 G \mathcal{G} G-可测事件)时,对 X X X 的"最佳预测"。

特例 :若 G = σ ( Y ) \mathcal{G} = \sigma(Y) G=σ(Y) 由另一个随机变量生成,则 E [ X ∣ G ] \mathbb{E}[X|\mathcal{G}] E[X∣G] 可记为 E [ X ∣ Y ] \mathbb{E}[X|Y] E[X∣Y],表示给定 Y Y Y 时 X X X 的期望。

与其他定义的关联:

• 若 ( X , Y ) (X,Y) (X,Y) 有联合密度 f ( x , y ) f(x,y) f(x,y),则 E [ X ∣ Y = y ] = ∫ x f ( x ∣ y ) d x = ∫ x f ( x , y ) d x ∫ f ( x , y ) d x \mathbb{E}[X|Y=y] = \int x f(x|y) dx=\frac{\int x f(x,y) dx}{\int f(x,y) dx} E[X∣Y=y]=∫xf(x∣y)dx=∫f(x,y)dx∫xf(x,y)dx,其中 f ( x ∣ y ) f(x|y) f(x∣y) 为条件密度。测度论定义将此推广到更一般的场景,因此条件期望 E [ X ∣ Y = y ] \mathbb{E}[X|Y=y] E[X∣Y=y] 是关于 y y y 的函数。

性质:

条件期望具有线性性、单调性、塔性质(迭代期望)等,例如:

线性性 : E [ a X + b Y ∣ G ] = a E [ X ∣ G ] + b E [ Y ∣ G ] \mathbb{E}[aX + bY | \mathcal{G}] = a\mathbb{E}[X|\mathcal{G}] + b\mathbb{E}[Y|\mathcal{G}] E[aX+bY∣G]=aE[X∣G]+bE[Y∣G]。

塔性质 :若 H ⊆ G \mathcal{H} \subseteq \mathcal{G} H⊆G,则 E [ E [ X ∣ G ] ∣ H ] = E [ E [ X ∣ H ] ∣ G ] = E [ X ∣ H ] \mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] =\mathbb{E}[\mathbb{E}[X|\mathcal{H}]|\mathcal{G}] = \mathbb{E}[X|\mathcal{H}] E[E[X∣G]∣H]=E[E[X∣H]∣G]=E[X∣H]。

数学期望与条件期望 E [ E [ X ∣ G ] ] = E [ X ] \mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X] E[E[X∣G]]=E[X]。

相关推荐
十二imin6 天前
霍夫丁不等式详解
算法·机器学习·概率论
牟同學8 天前
从赌场到AI:期望值如何用C++改变世界?
c++·人工智能·概率论
likunyuan083013 天前
概率统计中的数学语言与术语2
概率论
MoRanzhi120317 天前
0. NumPy 系列教程:科学计算与数据分析实战
人工智能·python·机器学习·数据挖掘·数据分析·numpy·概率论
A尘埃18 天前
概率论+贝叶斯定理+似然函数和极大似然估计
概率论
likunyuan083018 天前
概率统计中的数学语言与术语1
人工智能·机器学习·概率论
2401_8414956419 天前
【机器学习】朴素贝叶斯法
人工智能·python·数学·算法·机器学习·概率论·朴素贝叶斯法
汐汐咯21 天前
随机过程笔记
概率论
橙狮科技22 天前
2014-2024高考真题考点分布详细分析(另附完整高考真题下载)
概率论·高考
jie*23 天前
小杰机器学习(six)——概率论——1.均匀分布2.正态分布3.数学期望4.方差5.标准差6.多维随机变量及其分布
人工智能·机器学习·概率论