杂谈-有感而发

今天又拜读了线性代数的几何意义这本书,感觉确实是很不错的,从几何角度讲解线性代数,而且将线性代数、几何、数学、物理有机结合起来了,不仅仅是可视化,重要的是能便于自己独立思考下去。

从大一开始,就听老师说,线性代数多么多么重要,但是实际去学呢,却发现比较深邃,很难理解。当然,最后做题的话,不论考多少,都不敢说自己能深刻理解线性代数,考90和考60,说实话,并没有区别。会做题和有理解有着本质区别的。

那么问题出在哪里?教材?老师?我觉得都不是。大一下的时候学了向量积,课本切入点是从物理中的旋转切入的,但是里面有个概念叫力矩,初中的概念?反正高中没怎么说过这个词,但是看到这里就不想看其由来了,因为对其方向等等不确定朝哪,反正最后书上得出来的是v = wxr,进而引出向量积。这就跟高中不一样了,高中只用一种乘法,点乘、叉乘没什么区别,但回过头来再看看,确实只能是叉乘,不能是点乘。后来高数课本中提到向量积叉乘简便方法是转换成3阶行列式,为什么呢?不知道,书上也没说,毕竟大一上学了线性代数,知道有这个方法就行,也就这么过去了,对做题没什么影响。

现在想想,先学线性代数呢还是先搞明白向量积呢?我觉得还是向量积更重要些,理解了这个概念,再结合这个概念去学线性代数,就会好很多。向量在线性代数中的地位十分重要,少了向量积这个概念,硬去学线性代数肯定好不到哪里去。不过可惜的是,大一上迷迷糊糊地学了线性代数,大一下才在高数中学到向量积,而且没有将二者结合起来,只是会一味地做题,真的有用吗?

另外,高数教材中向量积的切入点,我觉得不如直接从洛伦兹力角度切入,F=qvB?现在来看肯定不是,在纯磁场中,F = qvxB才对,而且对于v和B的叉乘方向再熟悉不过了,B穿掌心,v延四指,大拇指就是F方向。而且这其实也是一种旋转。

所以现在看看,学线性代数的路线应该是:从洛伦兹力切入向量积概念后,明白混合积的意义,然后再去学线性代数,最好能够可视化,从而产生自己的理解。

相关推荐
LiJieNiub16 小时前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
weixin_5195357717 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
寂静山林17 小时前
UVa 10228 A Star not a Tree?
算法
爱喝白开水a17 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void17 小时前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG17 小时前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全
Neverfadeaway17 小时前
【C语言】深入理解函数指针数组应用(4)
c语言·开发语言·算法·回调函数·转移表·c语言实现计算器
生命是有光的17 小时前
【深度学习】神经网络基础
人工智能·深度学习·神经网络
数字供应链安全产品选型17 小时前
国家级!悬镜安全入选两项“网络安全国家标准应用实践案例”
人工智能·安全·web安全
科技新知18 小时前
大厂AI各走“开源”路
人工智能·开源