杂谈-有感而发

今天又拜读了线性代数的几何意义这本书,感觉确实是很不错的,从几何角度讲解线性代数,而且将线性代数、几何、数学、物理有机结合起来了,不仅仅是可视化,重要的是能便于自己独立思考下去。

从大一开始,就听老师说,线性代数多么多么重要,但是实际去学呢,却发现比较深邃,很难理解。当然,最后做题的话,不论考多少,都不敢说自己能深刻理解线性代数,考90和考60,说实话,并没有区别。会做题和有理解有着本质区别的。

那么问题出在哪里?教材?老师?我觉得都不是。大一下的时候学了向量积,课本切入点是从物理中的旋转切入的,但是里面有个概念叫力矩,初中的概念?反正高中没怎么说过这个词,但是看到这里就不想看其由来了,因为对其方向等等不确定朝哪,反正最后书上得出来的是v = wxr,进而引出向量积。这就跟高中不一样了,高中只用一种乘法,点乘、叉乘没什么区别,但回过头来再看看,确实只能是叉乘,不能是点乘。后来高数课本中提到向量积叉乘简便方法是转换成3阶行列式,为什么呢?不知道,书上也没说,毕竟大一上学了线性代数,知道有这个方法就行,也就这么过去了,对做题没什么影响。

现在想想,先学线性代数呢还是先搞明白向量积呢?我觉得还是向量积更重要些,理解了这个概念,再结合这个概念去学线性代数,就会好很多。向量在线性代数中的地位十分重要,少了向量积这个概念,硬去学线性代数肯定好不到哪里去。不过可惜的是,大一上迷迷糊糊地学了线性代数,大一下才在高数中学到向量积,而且没有将二者结合起来,只是会一味地做题,真的有用吗?

另外,高数教材中向量积的切入点,我觉得不如直接从洛伦兹力角度切入,F=qvB?现在来看肯定不是,在纯磁场中,F = qvxB才对,而且对于v和B的叉乘方向再熟悉不过了,B穿掌心,v延四指,大拇指就是F方向。而且这其实也是一种旋转。

所以现在看看,学线性代数的路线应该是:从洛伦兹力切入向量积概念后,明白混合积的意义,然后再去学线性代数,最好能够可视化,从而产生自己的理解。

相关推荐
想要成为计算机高手41 分钟前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
NeoFii1 小时前
Day 22: 复习
机器学习
静心问道1 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.02 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
爱喝矿泉水的猛男2 小时前
非定长滑动窗口(持续更新)
算法·leetcode·职场和发展
小楓12012 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
YuTaoShao2 小时前
【LeetCode 热题 100】131. 分割回文串——回溯
java·算法·leetcode·深度优先
数据与人工智能律师2 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen2 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域3 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序