深度学习笔记22-RNN心脏病预测(Tensorflow)

一、前期准备

1.导入数据

python 复制代码
import tensorflow as tf
import pandas as pd
import numpy as np
df=pd.read_csv("E:/heart.csv")
df

2.检查数据是否有空值

python 复制代码
df.isnull().sum()

二、数据预处理

1.划分训练集与测试集

python 复制代码
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
X=df.iloc[:,:-1]
y=df.iloc[:,-1]
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.1,random_state=1)

2.标准化

python 复制代码
#将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的#
sc=StandardScaler()
X_train =sc.fit_transform(X_train)
X_test = sc.transform(X_test)
X_train =X_train.reshape(X_train.shape[0],X_train.shape[1],1)
X_test =X_test.reshape(X_test.shape[0],X_test.shape[1],1)

三、构建RNN模型

python 复制代码
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,LSTM,SimpleRNN
model= Sequential()
model.add(SimpleRNN(200,input_shape=(13,1),activation='relu'))
model.add(Dense(100,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.summary()

四、编译模型

python 复制代码
opt=tf.keras.optimizers.Adam(learning_rate=0.0001)
model.compile(loss='binary_crossentropy',optimizer=opt,metrics=['accuracy'])

五、训练模型

python 复制代码
epochs=100
history=model.fit(X_train,y_train,epochs=epochs,batch_size=128,validation_data=(X_test,y_test),verbose=1)

六、模型评估

python 复制代码
import matplotlib.pyplot as plt
from datetime import datetime
current_time=datetime.now()
acc=history.history['accuracy']
val_acc=history.history['val_accuracy']
loss=history.history['loss']
val_loss=history.history['val_loss']
epochs_range = range(epochs)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range,acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
python 复制代码
scores=model.evaluate(X_test,y_test,verbose=0)
print("%s:%2f%%" % (model.metrics_names[1],scores[1]*100))

compile_metrics:83.6451%

七、总结

1.RNN函数原型

相关推荐
知乎的哥廷根数学学派21 分钟前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
芯思路1 小时前
STM32开发学习笔记之三【按键】
笔记·stm32·学习
Lips6111 小时前
2026.1.11力扣刷题笔记
笔记·算法·leetcode
梦梦代码精2 小时前
《全栈开源智能体:终结企业AI拼图时代》
人工智能·后端·深度学习·小程序·前端框架·开源·语音识别
袁气满满~_~2 小时前
Python数据分析学习
开发语言·笔记·python·学习
kebijuelun3 小时前
FlashInfer-Bench:把 AI 生成的 GPU Kernel 放进真实 LLM 系统的“闭环引擎”
人工智能·gpt·深度学习·机器学习·语言模型
njsgcs3 小时前
ppo 找出口模型 训练笔记
人工智能·笔记
你要飞4 小时前
考研线代第四课:线性方程组
笔记·线性代数·考研·矩阵
week_泽4 小时前
第5课:短期记忆与长期记忆原理 - 学习笔记_5
java·笔记·学习·ai agent
日更嵌入式的打工仔5 小时前
嵌入式系统设计师软考个人笔记<1>
笔记