PyTorch卷积层填充(Padding)与步幅(Stride)详解及代码示例

本文通过具体代码示例讲解PyTorch中卷积操作的填充(Padding) 和**步幅(Stride)**对输出形状的影响,帮助读者掌握卷积层的参数配置技巧。


一、填充与步幅基础

  • 填充(Padding):在输入数据边缘添加指定数量的像素,用于控制输出尺寸的大小。

  • 步幅(Stride):卷积核在输入数据上每次滑动的步长,用于控制输出尺寸的缩小比例。

输出尺寸计算公式:

二、代码实现与示例

1. 全侧边填充1个像素

python 复制代码
import torch
from torch import nn

def comp_conv2d(conv2d, x):
    x = x.reshape((1, 1) + x.shape)  # 增加批次和通道维度
    y = conv2d(x)                    # 计算卷积
    return y.reshape(y.shape[2:])    # 删除批次和通道维度

# 创建卷积层:3x3卷积核,填充1像素
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
x = torch.rand((8, 8))               # 8x8输入矩阵
comp_conv2d(conv2d, x).shape         # 输出形状

输出结果

bash 复制代码
torch.Size([8, 8])

解析:填充1像素后,输入尺寸保持不变。


2. 非对称填充(高度和宽度不同)

python 复制代码
# 创建卷积层:5x3卷积核,高度填充2,宽度填充1
conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, x).shape

输出结果

bash 复制代码
torch.Size([8, 8])

3. 步幅设置为2

python 复制代码
# 创建卷积层:3x3卷积核,填充1,步幅2
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, x).shape

输出结果

bash 复制代码
torch.Size([4, 4])

4. 复杂参数组合

python 复制代码
# 创建卷积层:3x5卷积核,高度不填充,宽度填充1,步幅(3,4)
conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, x).shape

输出结果

bash 复制代码
torch.Size([2, 2])

三、总结

  1. 填充用于保持输入输出尺寸一致或调整边缘特征保留。

  2. 步幅用于降低输出尺寸,减少计算量。

  3. 通过组合不同参数,可灵活控制卷积层的输出形状。

建议读者通过修改参数自行实验,深入理解公式中的数值变化规律。

相关推荐
猫头虎8 分钟前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农26 分钟前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农26 分钟前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络
数据智能老司机27 分钟前
面向企业的图学习扩展——图简介
人工智能·机器学习·ai编程
盼小辉丶27 分钟前
PyTorch生成式人工智能——使用MusicGen生成音乐
pytorch·python·深度学习·生成模型
mit6.8241 小时前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫1 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域2 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
HAPPY酷2 小时前
给纯小白的Python操作 PDF 笔记
开发语言·python·pdf
Tiger Z2 小时前
《动手学深度学习v2》学习笔记 | 1. 引言
pytorch·深度学习·ai编程