PyTorch卷积层填充(Padding)与步幅(Stride)详解及代码示例

本文通过具体代码示例讲解PyTorch中卷积操作的填充(Padding) 和**步幅(Stride)**对输出形状的影响,帮助读者掌握卷积层的参数配置技巧。


一、填充与步幅基础

  • 填充(Padding):在输入数据边缘添加指定数量的像素,用于控制输出尺寸的大小。

  • 步幅(Stride):卷积核在输入数据上每次滑动的步长,用于控制输出尺寸的缩小比例。

输出尺寸计算公式:

二、代码实现与示例

1. 全侧边填充1个像素

python 复制代码
import torch
from torch import nn

def comp_conv2d(conv2d, x):
    x = x.reshape((1, 1) + x.shape)  # 增加批次和通道维度
    y = conv2d(x)                    # 计算卷积
    return y.reshape(y.shape[2:])    # 删除批次和通道维度

# 创建卷积层:3x3卷积核,填充1像素
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
x = torch.rand((8, 8))               # 8x8输入矩阵
comp_conv2d(conv2d, x).shape         # 输出形状

输出结果

bash 复制代码
torch.Size([8, 8])

解析:填充1像素后,输入尺寸保持不变。


2. 非对称填充(高度和宽度不同)

python 复制代码
# 创建卷积层:5x3卷积核,高度填充2,宽度填充1
conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, x).shape

输出结果

bash 复制代码
torch.Size([8, 8])

3. 步幅设置为2

python 复制代码
# 创建卷积层:3x3卷积核,填充1,步幅2
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, x).shape

输出结果

bash 复制代码
torch.Size([4, 4])

4. 复杂参数组合

python 复制代码
# 创建卷积层:3x5卷积核,高度不填充,宽度填充1,步幅(3,4)
conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, x).shape

输出结果

bash 复制代码
torch.Size([2, 2])

三、总结

  1. 填充用于保持输入输出尺寸一致或调整边缘特征保留。

  2. 步幅用于降低输出尺寸,减少计算量。

  3. 通过组合不同参数,可灵活控制卷积层的输出形状。

建议读者通过修改参数自行实验,深入理解公式中的数值变化规律。

相关推荐
lqjun08272 分钟前
Pytorch实现常用代码笔记
人工智能·pytorch·笔记
qyhua3 分钟前
用 PyTorch 从零实现简易GPT(Transformer 模型)
人工智能·pytorch·transformer
白熊18839 分钟前
【计算机视觉】OpenCV项目实战:基于face_recognition库的实时人脸识别系统深度解析
人工智能·opencv·计算机视觉
桃花键神41 分钟前
华为云Flexus+DeepSeek征文|基于Dify平台tiktok音乐领域热门短视频分析Ai agent
人工智能·华为云
几道之旅43 分钟前
mAP、AP50、AR50:目标检测中的核心评价指标解析
人工智能·目标检测·目标跟踪
英英_1 小时前
python 自动化教程
开发语言·python·自动化
万能程序员-传康Kk1 小时前
【Python+flask+mysql】网易云数据可视化分析(全网首发)
python·mysql·信息可视化·数据分析·flask·可视化·网易云
先做个垃圾出来………1 小时前
汉明距离(Hamming Distance)
开发语言·python·算法
测试者家园1 小时前
用 VS Code / PyCharm 编写你的第一个 Python 程序
ide·vscode·python·职场和发展·零基础·pycharm·零基础学python
搏博1 小时前
抗量子计算攻击的数据安全体系构建:从理论突破到工程实践
人工智能·人机交互·量子计算