PyTorch卷积层填充(Padding)与步幅(Stride)详解及代码示例

本文通过具体代码示例讲解PyTorch中卷积操作的填充(Padding) 和**步幅(Stride)**对输出形状的影响,帮助读者掌握卷积层的参数配置技巧。


一、填充与步幅基础

  • 填充(Padding):在输入数据边缘添加指定数量的像素,用于控制输出尺寸的大小。

  • 步幅(Stride):卷积核在输入数据上每次滑动的步长,用于控制输出尺寸的缩小比例。

输出尺寸计算公式:

二、代码实现与示例

1. 全侧边填充1个像素

python 复制代码
import torch
from torch import nn

def comp_conv2d(conv2d, x):
    x = x.reshape((1, 1) + x.shape)  # 增加批次和通道维度
    y = conv2d(x)                    # 计算卷积
    return y.reshape(y.shape[2:])    # 删除批次和通道维度

# 创建卷积层:3x3卷积核,填充1像素
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
x = torch.rand((8, 8))               # 8x8输入矩阵
comp_conv2d(conv2d, x).shape         # 输出形状

输出结果

bash 复制代码
torch.Size([8, 8])

解析:填充1像素后,输入尺寸保持不变。


2. 非对称填充(高度和宽度不同)

python 复制代码
# 创建卷积层:5x3卷积核,高度填充2,宽度填充1
conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, x).shape

输出结果

bash 复制代码
torch.Size([8, 8])

3. 步幅设置为2

python 复制代码
# 创建卷积层:3x3卷积核,填充1,步幅2
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, x).shape

输出结果

bash 复制代码
torch.Size([4, 4])

4. 复杂参数组合

python 复制代码
# 创建卷积层:3x5卷积核,高度不填充,宽度填充1,步幅(3,4)
conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, x).shape

输出结果

bash 复制代码
torch.Size([2, 2])

三、总结

  1. 填充用于保持输入输出尺寸一致或调整边缘特征保留。

  2. 步幅用于降低输出尺寸,减少计算量。

  3. 通过组合不同参数,可灵活控制卷积层的输出形状。

建议读者通过修改参数自行实验,深入理解公式中的数值变化规律。

相关推荐
Emma歌小白几秒前
JavaScript (JS) 和 Python 语法对比
python
愚昧之山绝望之谷开悟之坡3 分钟前
什么是视频上墙
人工智能·笔记
pljnb11 分钟前
SVM(支持向量机)
人工智能·机器学习·支持向量机
掘金詹姆斯11 分钟前
LangChain4j—持久化聊天记忆 Persistence(五)
java·人工智能
梓羽玩Python23 分钟前
开源AI代理爆火!Suna:3天内新增5.5K+标星,自然对话驱动的自动化神器!
人工智能·python·github
新智元27 分钟前
70% 大小,100% 准确!完美压缩 LLM 性能 0 损失,推理速度最高飙升 39 倍
人工智能·openai
咖啡调调。28 分钟前
模板引擎语法-过滤器
python·django·sqlite
Ann30 分钟前
RAG:让AI回答更“靠谱”
人工智能·llm
新智元32 分钟前
GPT-4.5 功臣遭驱逐!奥特曼盛赞工作出色,美国深陷 AI 人才危机
人工智能·openai
Ankie Wan38 分钟前
notepad++技巧:查找和替换:扩展 or 正则表达式
python·正则表达式·notepad++