PyTorch卷积层填充(Padding)与步幅(Stride)详解及代码示例

本文通过具体代码示例讲解PyTorch中卷积操作的填充(Padding) 和**步幅(Stride)**对输出形状的影响,帮助读者掌握卷积层的参数配置技巧。


一、填充与步幅基础

  • 填充(Padding):在输入数据边缘添加指定数量的像素,用于控制输出尺寸的大小。

  • 步幅(Stride):卷积核在输入数据上每次滑动的步长,用于控制输出尺寸的缩小比例。

输出尺寸计算公式:

二、代码实现与示例

1. 全侧边填充1个像素

python 复制代码
import torch
from torch import nn

def comp_conv2d(conv2d, x):
    x = x.reshape((1, 1) + x.shape)  # 增加批次和通道维度
    y = conv2d(x)                    # 计算卷积
    return y.reshape(y.shape[2:])    # 删除批次和通道维度

# 创建卷积层:3x3卷积核,填充1像素
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
x = torch.rand((8, 8))               # 8x8输入矩阵
comp_conv2d(conv2d, x).shape         # 输出形状

输出结果

bash 复制代码
torch.Size([8, 8])

解析:填充1像素后,输入尺寸保持不变。


2. 非对称填充(高度和宽度不同)

python 复制代码
# 创建卷积层:5x3卷积核,高度填充2,宽度填充1
conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, x).shape

输出结果

bash 复制代码
torch.Size([8, 8])

3. 步幅设置为2

python 复制代码
# 创建卷积层:3x3卷积核,填充1,步幅2
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, x).shape

输出结果

bash 复制代码
torch.Size([4, 4])

4. 复杂参数组合

python 复制代码
# 创建卷积层:3x5卷积核,高度不填充,宽度填充1,步幅(3,4)
conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, x).shape

输出结果

bash 复制代码
torch.Size([2, 2])

三、总结

  1. 填充用于保持输入输出尺寸一致或调整边缘特征保留。

  2. 步幅用于降低输出尺寸,减少计算量。

  3. 通过组合不同参数,可灵活控制卷积层的输出形状。

建议读者通过修改参数自行实验,深入理解公式中的数值变化规律。

相关推荐
先做个垃圾出来………38 分钟前
2116. 判断一个括号字符串是否有效
python
吕永强39 分钟前
人工智能与环境:守护地球的智能防线
人工智能·科普
兮℡檬,1 小时前
房价预测|Pytorch
人工智能·pytorch·python
im_AMBER4 小时前
学习日志19 python
python·学习
白-胖-子6 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手7 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
mortimer7 小时前
安装NVIDIA Parakeet时,我遇到的两个Pip“小插曲”
python·github
@昵称不存在7 小时前
Flask input 和datalist结合
后端·python·flask
静心问道8 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.08 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络