基础的贝叶斯神经网络(BNN)回归

下面是一个最基础的贝叶斯神经网络(BNN)回归 示例,采用PyTorch实现,适合入门理解。

这个例子用BNN拟合 y = x + 噪声 的一维回归问题,输出均值和不确定性(方差)。

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

# 1. 生成数据
np.random.seed(0)
x = np.linspace(-3, 3, 100)
y = x + np.random.normal(0, 0.5, size=x.shape)

# 转为torch tensor
x_train = torch.tensor(x, dtype=torch.float32).unsqueeze(1)
y_train = torch.tensor(y, dtype=torch.float32).unsqueeze(1)

# 2. 定义贝叶斯回归网络(输出均值和log方差)
class BayesianRegressor(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(1, 32), nn.ReLU(),
            nn.Linear(32, 32), nn.ReLU(),
            nn.Linear(32, 2) # 输出均值和log方差
        )
    def forward(self, x):
        out = self.net(x)
        mean = out[:, 0:1]
        logvar = out[:, 1:2]
        return mean, logvar

# 3. 贝叶斯损失函数(负对数似然)
def bayesian_loss(mean, logvar, target):
    # 对应N(y|mean, exp(logvar))
    return (0.5 * torch.exp(-logvar) * (target - mean) ** 2 + 0.5 * logvar).mean()

# 4. 训练网络
model = BayesianRegressor()
optimizer = optim.Adam(model.parameters(), lr=0.01)

for epoch in range(2000):
    mean, logvar = model(x_train)
    loss = bayesian_loss(mean, logvar, y_train)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if (epoch+1) % 200 == 0:
        print(f"Epoch {epoch+1}, Loss: {loss.item():.4f}")

# 5. 预测与可视化
x_test = torch.linspace(-3, 3, 100).unsqueeze(1)
mean_pred, logvar_pred = model(x_test)
mean_pred = mean_pred.detach().numpy().flatten()
std_pred = torch.exp(0.5 * logvar_pred).detach().numpy().flatten()

plt.figure(figsize=(8, 5))
plt.scatter(x, y, label='Data', color='gray', s=10)
plt.plot(x, x, 'g--', label='True function')
plt.plot(x_test, mean_pred, 'b-', label='BNN mean')
plt.fill_between(x_test.flatten(), mean_pred-2*std_pred, mean_pred+2*std_pred, color='orange', alpha=0.3, label='BNN ±2std')
plt.legend()
plt.title("Simple Bayesian Neural Network Regression")
plt.show()
相关推荐
MobotStone9 小时前
数字沟通之道
人工智能·算法
Together_CZ9 小时前
Cambrian-S: Towards Spatial Supersensing in Video——迈向视频中的空间超感知
人工智能·机器学习·音视频·spatial·cambrian-s·迈向视频中的空间超感知·supersensing
caiyueloveclamp9 小时前
【功能介绍05】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI辅写+分享篇】
人工智能·powerpoint·ai生成ppt·aippt·免费aippt
Aileen_0v010 小时前
【Gemini3.0的国内use教程】
android·人工智能·算法·开源·mariadb
xiaogutou112110 小时前
5款软件,让歌唱比赛海报设计更简单
人工智能
后端小张10 小时前
智眼法盾:基于Rokid AR眼镜的合同条款智能审查系统开发全解析
人工智能·目标检测·计算机视觉·ai·语言模型·ar·硬件架构
dalalajjl10 小时前
每个Python开发者都应该试试知道创宇AiPy!工作效率提升500%的秘密武器
大数据·人工智能
wheeldown10 小时前
【Rokid+CXR-M】基于Rokid CXR-M SDK的博物馆AR导览系统开发全解析
c++·人工智能·ar
爱看科技10 小时前
AI智能计算竞赛“战火重燃”,谷歌/高通/微美全息构建AI全栈算力开启巅峰角逐新篇
人工智能
IT_陈寒10 小时前
Redis性能翻倍的5个冷门技巧,90%开发者都不知道第3个!
前端·人工智能·后端