最新DeepSeek-Prover-V2-671B模型 简介、下载、体验、微调、数据集:专为数学定理自动证明设计的超大垂直领域语言模型(在线体验地址)

DeepSeek-Prover-V2-671B模型 简介、下载、体验、微调、数据集:专为数学定理自动证明设计的超大垂直领域语言模型(在线体验地址

体验地址 :[Hugging Face 在线体验]https://huggingface.co/playground?modelId=deepseek-ai/DeepSeek-Prover-V2-671B&provider=novita
推荐入口 :[Novita 平台直达链接(含邀请码)]https://novita.ai/referral?invited_code=A43LMN


一、模型简介

DeepSeek-Prover-V2-671B 是 DeepSeek 团队于 2025 年发布的超大规模开源语言模型,专为 Lean 4 环境下的数学定理自动证明任务 设计。该模型采用深度链式思维(Chain-of-Thought)结合形式化推理训练,成功将"人类直觉式证明"与"严谨符号逻辑"结合,开启了 AI 数学证明的新阶段。

本模型构建在 DeepSeek-V3 架构基础之上,支持超长上下文输入,并在多个数学证明权威基准测试中创下 SOTA 表现。


二、模型亮点与技术创新

1. 冷启动数据构建:递归证明生成流程

  • 利用 DeepSeek-V3 将复杂定理拆分为子目标;
  • 使用小模型(7B)依次完成子目标 Lean 4 证明;
  • 将子目标整合为完整定理证明,并保留推理链(CoT);

2. 强化学习:形式+非形式联合训练

  • 将符号证明与自然语言推理串联;
  • 使用"正误"反馈强化模型推理与形式化能力联动;
  • 显著提升对竞赛题、高阶数学题的适应性;

3. SOTA 性能表现

  • MiniF2F-Test 集:88.9% 通过率
  • PutnamBench:解出 49/658 高难问题

三、模型下载与调用方式

模型文件(两种规模)

模型版本 下载链接
DeepSeek-Prover-V2-7B https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-7B
DeepSeek-Prover-V2-671B https://huggingface.co/deepseek-ai/DeepSeek-Prover-V2-671B

Hugging Face 直接体验入口

https://huggingface.co/playground?modelId=deepseek-ai/DeepSeek-Prover-V2-671B&provider=novita

推荐体验平台(Novita)

https://novita.ai/referral?invited_code=A43LMN


四、数据集资源

ProverBench:325题专业数学题集

该评测集包含来自 AIME 数学竞赛、高校教材、分析代数等不同领域的题目,是目前最系统的数学推理模型评测集之一。

领域 数量
AIME 24/25 15
微积分/实分析 120
数论/代数 110
概率/复分析 20
抽象代数/泛函分析 60

下载地址https://huggingface.co/datasets/deepseek-ai/DeepSeek-ProverBench


五、使用示例:自动生成 Lean 4 证明代码

python 复制代码
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
torch.manual_seed(30)

model_id = "DeepSeek-Prover-V2-7B"  # or DeepSeek-Prover-V2-671B
tokenizer = AutoTokenizer.from_pretrained(model_id)

formal_statement = """
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- What is the positive difference between $120\%$ of 30 and $130\%$ of 20? Show that it is 10.-/
theorem mathd_algebra_10 : abs ((120 : ℝ) / 100 * 30 - 130 / 100 * 20) = 10 := by
  sorry
""".strip()

prompt = """
Complete the following Lean 4 code:

```lean4
{}
/```

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan outlining the main proof steps and strategies.
The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the construction of the final formal proof.
""".strip()

chat = [
  {"role": "user", "content": prompt.format(formal_statement)},
]

model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
inputs = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)

import time
start = time.time()
outputs = model.generate(inputs, max_new_tokens=8192)
print(tokenizer.batch_decode(outputs))
print(time.time() - start)

六、模型微调说明(高级用户)

  • 基础框架:与 DeepSeek-V3 结构兼容;
  • 上下文长度支持:最大支持 163K tokens;
  • 精度与效率平衡:支持 FP8/BF16 精度加速训练;
  • 推荐场景:Lean 4 高阶训练、大学数学 AI 助教、自动题解平台等。

七、许可证信息

  • 模型代码:MIT License
  • 模型权重 :Model License(需遵循使用条款)
    详见:LICENSE-MODEL

八、联系方式与支持


如需将本模型部署为企业级数学引擎,或进行专业定制化训练,请联系 DeepSeek 团队获得商业合作通道。

相关推荐
love530love1 分钟前
【笔记】解决 Stable Diffusion WebUI 启动 “找不到llama_cpp模块”
运维·windows·笔记·python·stable diffusion·github·llama
h***67373 分钟前
Flask:后端框架使用
后端·python·flask
技术传感器6 分钟前
Prompt工程的艺术与科学:从“对话“到“编程“,掌握与大模型高效协作的元技能
人工智能·microsoft·架构·prompt·aigc
MediaTea7 分钟前
Python 库手册:gc 垃圾回收
java·开发语言·jvm·python·算法
红蒲公英9 分钟前
( 教学 )Agent 构建 Prompt(提示词)2. CommaSeparatedListOutputParser
人工智能·python·langchain·prompt·langgraph
v***431710 分钟前
Elasticsearch(ES)基础查询语法的使用
python·elasticsearch·django
玖日大大1 小时前
JoyAgent-JDGenie:开源多智能体系统的工业级实践
人工智能·开源
子午1 小时前
【民族服饰识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
Jay20021111 小时前
【机器学习】21-22 机器学习系统开发流程 & 倾斜数据集
人工智能·机器学习·计算机视觉
沃达德软件6 小时前
智慧警务图像融合大数据
大数据·图像处理·人工智能·目标检测·计算机视觉·目标跟踪