使用HunyuanVideo搭建文本生视频大模型

1.摘要

HunyuanVideo是一个全新的开源视频基础模型,其视频生成性能堪比领先的闭源模型,甚至超越它们。我们采用了多项模型学习的关键技术,通过有效的模型架构和数据集扩展策略,我们成功训练了一个拥有超过 130 亿个参数的视频生成模型,使其成为所有开源模型中规模最大的模型。

部署环境为:linux服务器,GPU大小为64G。

2. 安装

2.1 下载项目代码

git clone https://github.com/tencent/HunyuanVideo

cd HunyuanVideo

2.2 linux 环境部署

#1. Create conda environment

conda create -n HunyuanVideo python==3.10.9

2. Activate the environment

conda activate HunyuanVideo

3. Install PyTorch and other dependencies using conda

For CUDA 11.8

conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=11.8 -c pytorch -c nvidia

For CUDA 12.4

conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia

conda install pytorch-cuda -c pytorch -c nvidia

4. Install pip dependencies

python -m pip install -r requirements.txt

5. Install flash attention v2 for acceleration (requires CUDA 11.8 or above)

python -m pip install ninja

python -m pip install git+https://github.com/Dao-AILab/flash-attention.git@v2.6.3

6. Install xDiT for parallel inference (It is recommended to use torch 2.4.0 and flash-attn 2.6.3)

python -m pip install xfuser==0.4.0

2.3 模型下载

https://huggingface.co/tencent/HunyuanVideo/tree/refs%2Fpr%2F18

  • 需要下载hunyuan-video-t2v-720p,text_encoder,text_encoder_2,tokenizer,tokenizer_2这5个。
  • 下载完成以后需要把tokenizer里面的内容放到text_encoder内。需要把tokenizer_2里面的内容放到text_encoder_2内。

cp tokenizer/* text_encoder

cp tokenizer_2/* text_encoder_2

  • 把hunyuan-video-t2v-720p,text_encoder,text_encoder_2放到目录HunyuanVideo/ckpts下面:
  • 目录结构:

3. 生成视频

3.1 本地生成

cd HunyuanVideo

CUDA_VISIBLE_DEVICES=0 python sample_video.py \

--video-size 544 544 \

--video-length 129 \

--infer-steps 50 \

--prompt "A cat walks on the grass, realistic style." \

--flow-reverse \

--use-cpu-offload \

--save-path ./results

文本生成视频成功,视频时长5秒,生成用时18分钟。

生成的视频在results目录下面:

最后去掉引号:

mv '2025-04-25-12:40:56_seed293232_A cat walks on the grass, realistic style..mp4' cat.mp4

3.2 运行Gradio Server

3.2.1 启动服务

Python gradio_server.py --flow-reverse

由于本机端口占用,所以我把端口改成了8881.

运行成功:

3.2.2 网页生成视频

由于GPU才64G,所以Number of Inference Steps设置为20。

3.3 参数详解

4. 可能遇到的问题及解决方法

4.1 问题1

TypeError: argument of type 'bool' is not iterable

ValueError: When localhost is not accessible, a shareable link must be created. Please set share=True or check your proxy settings to allow access to localhost.

解决方案:

pydantic这个包版本的问题,退回2.10.6版本即可 pip install pydantic==2.10.6,完美解决。

4.2 问题2

RuntimeError: Unable to find a valid cuDNN algorithm to run convolution

解决方案:

在gradio_server.py中增加以下代码:

import torch

torch.backends.cudnn.benchmark = True

4.3 问题3

ffmpy.ffmpy.FFExecutableNotFoundError: Executable 'ffprobe' not found

解决方案:

sudo apt-get install ffmpeg

相关推荐
小鸡吃米…5 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)6 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan6 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维6 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS6 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd7 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
njsgcs7 小时前
ue python二次开发启动教程+ 导入fbx到指定文件夹
开发语言·python·unreal engine·ue
io_T_T7 小时前
迭代器 iteration、iter 与 多线程 concurrent 交叉实践(详细)
python
水如烟7 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能