使用HunyuanVideo搭建文本生视频大模型

1.摘要

HunyuanVideo是一个全新的开源视频基础模型,其视频生成性能堪比领先的闭源模型,甚至超越它们。我们采用了多项模型学习的关键技术,通过有效的模型架构和数据集扩展策略,我们成功训练了一个拥有超过 130 亿个参数的视频生成模型,使其成为所有开源模型中规模最大的模型。

部署环境为:linux服务器,GPU大小为64G。

2. 安装

2.1 下载项目代码

git clone https://github.com/tencent/HunyuanVideo

cd HunyuanVideo

2.2 linux 环境部署

#1. Create conda environment

conda create -n HunyuanVideo python==3.10.9

2. Activate the environment

conda activate HunyuanVideo

3. Install PyTorch and other dependencies using conda

For CUDA 11.8

conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=11.8 -c pytorch -c nvidia

For CUDA 12.4

conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia

conda install pytorch-cuda -c pytorch -c nvidia

4. Install pip dependencies

python -m pip install -r requirements.txt

5. Install flash attention v2 for acceleration (requires CUDA 11.8 or above)

python -m pip install ninja

python -m pip install git+https://github.com/Dao-AILab/flash-attention.git@v2.6.3

6. Install xDiT for parallel inference (It is recommended to use torch 2.4.0 and flash-attn 2.6.3)

python -m pip install xfuser==0.4.0

2.3 模型下载

https://huggingface.co/tencent/HunyuanVideo/tree/refs%2Fpr%2F18

  • 需要下载hunyuan-video-t2v-720p,text_encoder,text_encoder_2,tokenizer,tokenizer_2这5个。
  • 下载完成以后需要把tokenizer里面的内容放到text_encoder内。需要把tokenizer_2里面的内容放到text_encoder_2内。

cp tokenizer/* text_encoder

cp tokenizer_2/* text_encoder_2

  • 把hunyuan-video-t2v-720p,text_encoder,text_encoder_2放到目录HunyuanVideo/ckpts下面:
  • 目录结构:

3. 生成视频

3.1 本地生成

cd HunyuanVideo

CUDA_VISIBLE_DEVICES=0 python sample_video.py \

--video-size 544 544 \

--video-length 129 \

--infer-steps 50 \

--prompt "A cat walks on the grass, realistic style." \

--flow-reverse \

--use-cpu-offload \

--save-path ./results

文本生成视频成功,视频时长5秒,生成用时18分钟。

生成的视频在results目录下面:

最后去掉引号:

mv '2025-04-25-12:40:56_seed293232_A cat walks on the grass, realistic style..mp4' cat.mp4

3.2 运行Gradio Server

3.2.1 启动服务

Python gradio_server.py --flow-reverse

由于本机端口占用,所以我把端口改成了8881.

运行成功:

3.2.2 网页生成视频

由于GPU才64G,所以Number of Inference Steps设置为20。

3.3 参数详解

4. 可能遇到的问题及解决方法

4.1 问题1

TypeError: argument of type 'bool' is not iterable

ValueError: When localhost is not accessible, a shareable link must be created. Please set share=True or check your proxy settings to allow access to localhost.

解决方案:

pydantic这个包版本的问题,退回2.10.6版本即可 pip install pydantic==2.10.6,完美解决。

4.2 问题2

RuntimeError: Unable to find a valid cuDNN algorithm to run convolution

解决方案:

在gradio_server.py中增加以下代码:

import torch

torch.backends.cudnn.benchmark = True

4.3 问题3

ffmpy.ffmpy.FFExecutableNotFoundError: Executable 'ffprobe' not found

解决方案:

sudo apt-get install ffmpeg

相关推荐
前端双越老师21 分钟前
30 行代码 langChain.js 开发你的第一个 Agent
人工智能·node.js·agent
Tomorrow'sThinker32 分钟前
[特殊字符] Excel 读取收件人 + Outlook 批量发送带附件邮件 —— Python 自动化实战
python·excel·outlook
东坡肘子37 分钟前
高温与奇怪的天象 | 肘子的 Swift 周报 #092
人工智能·swiftui·swift
JosieBook39 分钟前
【Java编程动手学】Java常用工具类
java·python·mysql
Green1Leaves40 分钟前
pytorch学习-11卷积神经网络(高级篇)
pytorch·学习·cnn
KaneLogger1 小时前
视频转文字,别再反复拖进度条了
前端·javascript·人工智能
度假的小鱼1 小时前
从 “人工编码“ 到 “AI 协同“:大模型如何重塑软件开发的效率与范式
人工智能
zm-v-159304339862 小时前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室3 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI3 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python