tensorflow-cpu

python3.8~3.12安装tensorflow-cpu

准备

创建并进入目录

bash 复制代码
mkdir tf-cpu
cd tf-cpu

编写测试代码

test_tensorflow.py

python 复制代码
import tensorflow as tf
 
# 检查TensorFlow版本
print("\nTensorFlow version:", tf.__version__,end='\n\n')
 
# 创建一个简单的计算图并运行它
tensor = tf.constant([[1, 2], [3, 4]])
result = tf.multiply(tensor, 2)
 
# 启动默认的TensorFlow会话(自TensorFlow 2.x起,推荐使用tf.function和eager execution)
if hasattr(tf, 'Session'):  # TensorFlow 1.x风格
    with tf.Session() as sess:
        output = sess.run(result)
        print("Output of multiplication:", output)
else:  # TensorFlow 2.x风格,默认启用eager execution
    output = result.numpy()  # 将Tensor转换为NumPy数组以查看结果
    print("Output of multiplication:\n", output)

python3.12 tensorflow

创建虚拟环境

bash 复制代码
python312 -m venv tf219-312

windows

bash 复制代码
cd tf219-312/Scripts
activate
cd ../../

linux

bash 复制代码
source tf219-312/bin/activate

升级pip版本

bash 复制代码
python -m pip install --upgrade pip

搜索可用版本

bash 复制代码
pip index versions tensorflow-cpu
pip index versions tensorflow-intel

安装指定版本

复制代码
pip install tensorflow-cpu==2.19.0

intel优化版本可以执行以下命令

bash 复制代码
pip install tensorflow-intel==2.18.0

测试

bash 复制代码
python test_tensorflow.py

取消激活环境

windows

bash 复制代码
cd tf219-312/Scripts
deactivate
cd ../../

linux

bash 复制代码
source tf219-312/bin/deactivate

python3.11 tensorflow

创建虚拟环境

bash 复制代码
python311 -m venv tf219-311

windows

bash 复制代码
cd tf219-311/Scripts
activate
cd ../../

linux

bash 复制代码
source tf219-311/bin/activate

升级pip版本

bash 复制代码
python -m pip install --upgrade pip

搜索可用版本

bash 复制代码
pip index versions tensorflow-cpu
pip index versions tensorflow-intel

安装指定版本

bash 复制代码
pip install tensorflow-cpu==2.19.0

intel优化版本可以执行以下命令

bash 复制代码
pip install tensorflow-intel==2.18.0

测试

bash 复制代码
python test_tensorflow.py

取消激活环境

windows

bash 复制代码
cd tf219-311/Scripts
deactivate
cd ../../

linux

bash 复制代码
source tf219-311/bin/deactivate

python3.10 tensorflow

创建虚拟环境

bash 复制代码
python310 -m venv tf219-310

windows

bash 复制代码
cd tf219-310/Scripts
activate
cd ../../

linux

bash 复制代码
source tf219-310/bin/activate

升级pip版本

bash 复制代码
python -m pip install --upgrade pip

搜索可用版本

bash 复制代码
pip index versions tensorflow-cpu
pip index versions tensorflow-intel

安装指定版本

bash 复制代码
pip install tensorflow-cpu==2.19.0

intel优化版本可以执行以下命令

bash 复制代码
pip install tensorflow-intel==2.18.0

测试

bash 复制代码
python test_tensorflow.py

取消激活环境

windows

bash 复制代码
cd tf219-310/Scripts
deactivate
cd ../../

linux

bash 复制代码
source tf219-310/bin/deactivate

python3.9 tensorflow

创建虚拟环境

bash 复制代码
python39 -m venv tf219-39

windows

bash 复制代码
cd tf219-39/Scripts
activate
cd ../../

linux

bash 复制代码
source tf219-39/bin/activate

升级pip版本

bash 复制代码
python -m pip install --upgrade pip

搜索可用版本

bash 复制代码
pip index versions tensorflow-cpu
pip index versions tensorflow-intel

安装指定版本

bash 复制代码
pip install tensorflow-cpu==2.19.0

intel优化版本可以执行以下命令

bash 复制代码
pip install tensorflow-intel==2.18.0

测试

bash 复制代码
python test_tensorflow.py

取消激活环境

windows

bash 复制代码
cd tf219-39/Scripts
deactivate
cd ../../

linux

bash 复制代码
source tf219-39/bin/deactivate

python3.8 tensorflow2.13

创建虚拟环境

bash 复制代码
D:\dev\python\Python38\python.exe -m venv tf213-38

windows

bash 复制代码
cd tf213-38/Scripts
activate
cd ../../

linux

bash 复制代码
source tf213-38/bin/activate

升级pip版本

bash 复制代码
python -m pip install --upgrade pip

搜索可用版本

bash 复制代码
pip index versions tensorflow-cpu
pip index versions tensorflow-intel

安装指定版本

复制代码
pip install tensorflow-cpu==2.13.0

intel优化版本可以执行以下命令

bash 复制代码
pip install tensorflow-intel==2.13.0

测试

bash 复制代码
python test_tensorflow.py

取消激活环境

windows

bash 复制代码
cd tf213-38/Scripts
deactivate
cd ../../

linux

bash 复制代码
source tf213-38/bin/deactivate
相关推荐
说私域3 分钟前
线下消费经济“举步维艰”,开源AI智能名片链动2+1+S2B2C小程序线上“狂飙突进”!
人工智能·小程序·开源·零售
马志远的生信笔记3 分钟前
质控脚本来喽
linux·数据分析
深蓝易网7 分钟前
深度拆解!MES如何重构生产计划与排产调度全流程?
大数据·运维·人工智能·重构·架构·制造
intcube7 分钟前
集中运营、分散决策,寻找最佳财务规划的平衡点
大数据·信息可视化·数据分析·全面预算管理·财务管理·财务规划
上海锝秉工控13 分钟前
「光域」系列激光测距传感器:以光为尺,重构空间认知边界
人工智能·重构
时序数据说16 分钟前
IoTDB 分段查询语句深度剖析:GROUP BY 与时序语义的完美结合
大数据·数据库·开源·时序数据库·iotdb
Tech Synapse16 分钟前
Unity ML-Agents实战指南:构建多技能游戏AI训练系统
人工智能·游戏·unity
AALoveTouch17 分钟前
大某麦演唱会门票如何自动抢
python
神码小Z32 分钟前
Midjourney-V7:支持参考图片头像或背景生成新保真图
人工智能·ai绘画
Francek Chen1 小时前
【现代深度学习技术】注意力机制05:多头注意力
人工智能·pytorch·深度学习·神经网络·注意力机制