ultalytics代码中模型接收多层输入的处理

yaml文件中,输入来自上一层和第六层的输入:

是将这两个输入打包成列表

详解这段代码:

python 复制代码
 x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers

输入来源 m.f

  • m.f:表示当前层的输入来源,可以是一个整数或一个列表。这个属性通常在模型的构建阶段定义,指明了当前层的输入是来自哪个层。

  • 也就是第一列参数:
    检查 m.f 的类型

  • isinstance(m.f, int) :检查 m.f 是否是一个整数。如果是整数,说明当前层的输入仅来自于一个特定的前置层。
    y 列表中获取输入

  • y[m.f]

    • 如果 m.f 是一个整数,直接使用 y[m.f] 获取对应层的输出。
    • y 列表在模型的前向传播过程中存储了各个层的输出。因此,通过 y[m.f] 可以获得之前某一层的输出,作为当前层的输入。
      从多个层中获取输入
  • else [x if j == -1 else y[j] for j in m.f]

    • 如果 m.f 是一个列表,说明当前层需要从多个前置层获取输入。
    • 在这个列表推导式中,x 的值取决于 m.f 中每个元素 j 的值。x 将通过列表推导式生成一个列表。

这里的y[]列表 是根据 parse_model函数中创建 的save列表对save[]列表中记录的层数输出进行保存;save只保存明确指定层的层数,-1这种上一层不保存。


假设 f = [-1, 6]。列表推导式的工作方式如下:

  1. 初始状态

    • 假设当前层的输入(在模型的前向传播中)是一个张量,比如 input_tensor
  2. 遍历 m.f

    • 对于 j = -1
      • 根据条件 if j == -1,将 x 赋值为当前层的输入,即 x = input_tensor
    • 对于 j = 6
      • 根据条件 else y[j],将 y[6] 的输出添加到 x 中。

最终,x = [ input_tensor, y[6] ]


所以这里,用-1,6 两层concat:

也就是对列表中的两个张量在第1维度进行拼接:

python 复制代码
import torch
import torch.nn as nn

# 假设我们有两个张量
input_tensor = torch.randn(2, 3, 4, 4)  # 形状为 (N=2, C1=3, H=4, W=4)
y_6 = torch.randn(2, 5, 4, 4)  # 形状为 (N=2, C2=5, H=4, W=4)

# 将张量放入列表
tensors = [input_tensor, y_6]

# 使用 torch.cat 进行连接
result = torch.cat(tensors, dim=1)  # 在通道维度上连接

# 显示结果的形状
print(result.shape)  # 输出: torch.Size([2, 8, 4, 4]),其中 8 = 3 + 5
相关推荐
计算机sci论文精选几秒前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能
秋难降10 分钟前
LRU缓存算法(最近最少使用算法)——工业界缓存淘汰策略的 “默认选择”
数据结构·python·算法
Christo332 分钟前
SIGKDD-2023《Complementary Classifier Induced Partial Label Learning》
人工智能·深度学习·机器学习
AIGC安琪44 分钟前
Transformer中的编码器和解码器是什么?
人工智能·深度学习·ai·语言模型·大模型·transformer·ai大模型
山烛1 小时前
OpenCV 图像处理基础操作指南(二)
人工智能·python·opencv·计算机视觉
CoovallyAIHub2 小时前
线性复杂度破局!Swin Transformer 移位窗口颠覆高分辨率视觉建模
深度学习·算法·计算机视觉
JXL18602 小时前
机器学习概念(面试题库)
人工智能·机器学习
星期天要睡觉2 小时前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
点云SLAM2 小时前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库