使用Mathematica绘制随机多项式的根

使用ListPlot和NSolve直接绘制:

复制代码
(*返回系数为r和s之间整数的n次随机多项式*) 
eq[n_, r_, s_] := RandomInteger[{r, s}, {n}] . Array[Power[x, # - 1] &, n] 
(*返回给定随机多项式的根所对应的笛卡尔坐标*) 
sol[n_, r_, s_] := {Re[#], Im[#]} & /@ (x /. NSolve[eq[n, r, s] == 0, x]) ListPlot[sol[400, 1, 6], PlotRange -> {{-1.5, 1.5}, {-1.5, 1.5}}, AspectRatio -> Automatic, PlotStyle -> {PointSize[Medium], Opacity[0.2], Black}]

使用Image和Fourier:

复制代码
SetSystemOptions["SparseArrayOptions" -> {"TreatRepeatedEntries" -> 1}];
\[Gamma] = 0.12;
\[Beta] = 1.0;
fLor = Compile[{{x, _Integer}, {y, _Integer}}, (\[Gamma]/(\[Gamma] + 
        x^2 + y^2))^\[Beta], RuntimeAttributes -> {Listable}(*,
   CompilationTarget->"C"*)];
<< Developer`
$PlotComplexPoints[list_, magnification_, paddingX_, paddingY_, 
  brightness_] := 
 Module[{RePos = 
    paddingX + 1 + Round[magnification (# - Min[#])] &[Re[list]], 
   ImPos = paddingY + 1 + Round[magnification (# - Min[#])] &[Im[list]],
    sparse, lor, dimX, dimY}, dimX = paddingX + Max[RePos];
  dimY = paddingY + Max[ImPos];
  Image[(brightness Sqrt[dimX dimY] Abs[
       InverseFourier[
        Fourier[SparseArray[
           Thread[{ImPos, RePos}\[Transpose] -> 
             ConstantArray[1, Length[list]]], {dimY, dimX}]] Fourier[
          RotateRight[
           fLor[#[[All, All, 1]], #[[All, All, 2]]] &@
            Outer[List, Range[-Floor[dimY/2], Floor[(dimY - 1)/2]], 
             Range[-Floor[dimX/2], Floor[(dimX - 1)/2]]], {Floor[
             dimY/2], 
            Floor[dimX/2]}]]]])\[TensorProduct]ToPackedArray[{1.0, 
      0.3, 0.1}], Magnification -> 1]]

直接绘制10000个随机的复平面点图:

复制代码
$PlotComplexPoints[ RandomComplex[{-1 - I, 1 + I}, 10000], 300, 20, 20, 10]

随机的150阶多项式的根的分布图:

复制代码
expr = Evaluate@Sum[RandomInteger[{1, 10}] #^k, {k, 150}] &; 
list = Table[N@Root[expr, k], {k, 150}]; 
$PlotComplexPoints[list, 320, 20, 20, 140]
相关推荐
点云侠13 小时前
PCL 点云旋转的轴角表示法
人工智能·线性代数·算法·计算机视觉·矩阵
云云32120 小时前
Snapchat矩阵运营新策略:亚矩阵云手机打造高效社交网络
线性代数·智能手机·矩阵
音程21 小时前
(详细介绍)线性代数中的零空间(Null Space)
线性代数
爱学习的capoo1 天前
【解析法与几何法在阻尼比设计】自控
线性代数·机器学习·概率论
只有左边一个小酒窝2 天前
(十七)深度学习之线性代数:核心概念与应用解析
人工智能·深度学习·线性代数
phoenix@Capricornus2 天前
主成分分析(PCA)例题——给定协方差矩阵
线性代数·矩阵
英雄哪里出来3 天前
《状压DP(01矩阵约束问题)》基础概念
数据结构·线性代数·算法·矩阵·动态规划·英雄算法联盟
盛寒3 天前
行列式的性质 线性代数
线性代数
猫头虎-人工智能3 天前
数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全
人工智能·opencv·线性代数·机器学习·计算机视觉·数据挖掘·语音识别