深度学习和神经网络 卷积神经网络CNN

1.什么是卷积神经网络

一种前馈神经网络;受生物学感受野的机制提出专门处理网格结构数据的深度学习模型

核心特点:通过卷积操作自动提取空间局部特征(如纹理、边缘),显著降低参数量

2.CNN的三个结构特征

局部连接;权重共享(不同位置上的卷积核是一样的);空间或时间上的次采样

3.卷积过程及不同类型的卷积

卷积过程:

输入矩阵与卷积核作矩阵乘法得到特征矩阵

javascript 复制代码
输入矩阵        卷积核(3×3)      输出特征图(3×3)
[1, 1, 1, 0, 0]   [1, 0, 1]        [4, 3, 4]
[0, 1, 1, 1, 0]   [0, 1, 0]   →    [2, 4, 3]
[0, 0, 1, 1, 1]   [1, 0, 1]        [2, 3, 4]
[0, 0, 1, 1, 0]                (步长=1,无填充)
[1, 1, 0, 0, 0]

不同类型卷积:

举出较常见的:

(1)窄卷积:步长step=1,无padding,卷积后输出维数为M-K+1

(2)宽卷积:步长step=1,有padding,在外围补K-1圈0,卷积后输出维数M+K-1

(3)等宽卷积(输出大小不变):步长step=1;有padding,在外围补一圈0即可,卷积后输出维数为M

注:M为输入序列的维数,K为补的大小,以矩阵为例

4.卷积核,卷积层,卷积网络结构

卷积核:

一个特征提取器,可以有多个卷积核,比如一个提取水平特征一个提取垂直特征,可以通过增加卷积核的个数来增强卷积层的能力

卷积层:

典型的卷积层为3维结构

卷积网络结构:

由卷积层、池化层,全连接层堆叠而成

(1)数据输入层(input_layer)

(2)卷积计算层(conv_layer)

局部特征提取;训练中进行参数学习;每个卷积核提取特定模式的特征

(3)ReLU激活层(ReLU_layer)

(4)池化层(polling_layer)

降低数据维度,避免过拟合;增强局部感受野;提高平移不变性

为了提炼最主要的特征并降维

(5)全连接层(fc_layer)

特征提取到分类的桥梁

5.残差网络(ResNet)

通过给非线性的卷积层增加直连边的方式来提高信息的传播效率

ResNet通过 "跨层连接 + 残差学习" ,将深层网络训练转化为对微小扰动(残差)的优化,彻底解决深度退化问题,开启千层神经网络时代

相关推荐
春日见18 分钟前
vscode代码无法跳转
大数据·人工智能·深度学习·elasticsearch·搜索引擎
OpenBayes3 小时前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
退休钓鱼选手4 小时前
[ Pytorch教程 ] 神经网络的基本骨架 torch.nn -Neural Network
pytorch·深度学习·神经网络
爱吃泡芙的小白白4 小时前
深入解析CNN中的Dropout层:从基础原理到最新变体实战
人工智能·神经网络·cnn·dropout·防止过拟合
哥布林学者5 小时前
吴恩达深度学习课程:深度学习入门笔记全集目录
深度学习·ai
xsc-xyc5 小时前
RuntimeError: Dataset ‘/data.yaml‘ error ❌ ‘_lz
人工智能·深度学习·yolo·计算机视觉·视觉检测
偷吃的耗子6 小时前
【CNN算法理解】:卷积神经网络 (CNN) 数值计算与传播机制
人工智能·算法·cnn
AI周红伟6 小时前
周红伟: DeepSeek大模型微调和部署实战:大模型全解析、部署及大模型训练微调代码实战
人工智能·深度学习
JicasdC123asd7 小时前
【深度学习实战】基于Mask-RCNN和HRNetV2P的腰果智能分级系统_1
人工智能·深度学习
陈天伟教授7 小时前
人工智能应用- 语言理解:07.大语言模型
人工智能·深度学习·语言模型