深度学习和神经网络 卷积神经网络CNN

1.什么是卷积神经网络

一种前馈神经网络;受生物学感受野的机制提出专门处理网格结构数据的深度学习模型

核心特点:通过卷积操作自动提取空间局部特征(如纹理、边缘),显著降低参数量

2.CNN的三个结构特征

局部连接;权重共享(不同位置上的卷积核是一样的);空间或时间上的次采样

3.卷积过程及不同类型的卷积

卷积过程:

输入矩阵与卷积核作矩阵乘法得到特征矩阵

javascript 复制代码
输入矩阵        卷积核(3×3)      输出特征图(3×3)
[1, 1, 1, 0, 0]   [1, 0, 1]        [4, 3, 4]
[0, 1, 1, 1, 0]   [0, 1, 0]   →    [2, 4, 3]
[0, 0, 1, 1, 1]   [1, 0, 1]        [2, 3, 4]
[0, 0, 1, 1, 0]                (步长=1,无填充)
[1, 1, 0, 0, 0]

不同类型卷积:

举出较常见的:

(1)窄卷积:步长step=1,无padding,卷积后输出维数为M-K+1

(2)宽卷积:步长step=1,有padding,在外围补K-1圈0,卷积后输出维数M+K-1

(3)等宽卷积(输出大小不变):步长step=1;有padding,在外围补一圈0即可,卷积后输出维数为M

注:M为输入序列的维数,K为补的大小,以矩阵为例

4.卷积核,卷积层,卷积网络结构

卷积核:

一个特征提取器,可以有多个卷积核,比如一个提取水平特征一个提取垂直特征,可以通过增加卷积核的个数来增强卷积层的能力

卷积层:

典型的卷积层为3维结构

卷积网络结构:

由卷积层、池化层,全连接层堆叠而成

(1)数据输入层(input_layer)

(2)卷积计算层(conv_layer)

局部特征提取;训练中进行参数学习;每个卷积核提取特定模式的特征

(3)ReLU激活层(ReLU_layer)

(4)池化层(polling_layer)

降低数据维度,避免过拟合;增强局部感受野;提高平移不变性

为了提炼最主要的特征并降维

(5)全连接层(fc_layer)

特征提取到分类的桥梁

5.残差网络(ResNet)

通过给非线性的卷积层增加直连边的方式来提高信息的传播效率

ResNet通过 "跨层连接 + 残差学习" ,将深层网络训练转化为对微小扰动(残差)的优化,彻底解决深度退化问题,开启千层神经网络时代

相关推荐
Coding茶水间26 分钟前
基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
baby_hua1 小时前
20251024_PyTorch深度学习快速入门教程
人工智能·pytorch·深度学习
another heaven3 小时前
【深度学习 YOLO官方模型全解析】
人工智能·深度学习·yolo
roman_日积跬步-终至千里4 小时前
【计算机视觉(16)】语义理解-训练神经网络1_激活_预处理_初始化_BN
人工智能·神经网络·计算机视觉
极度畅想5 小时前
脑电模型实战系列(三):DEAP 数据集处理与 Russell 环状模型实战(一)
深度学习·特征提取·情感计算·脑机接口 bci·deap数据集
LaughingZhu6 小时前
Product Hunt 每日热榜 | 2025-12-18
人工智能·经验分享·神经网络·搜索引擎·产品运营
CoovallyAIHub7 小时前
从“模仿”到“进化”!华科&小米开源MindDrive:在线强化学习重塑「语言-动作」闭环驾驶
深度学习·算法·计算机视觉
OpenBayes7 小时前
Open-AutoGLM 实现手机端自主操作;PhysDrive 数据集采集真实驾驶生理信号
人工智能·深度学习·机器学习·数据集·文档转换·图片生成·蛋白质设计
CoovallyAIHub7 小时前
SAM 真的开始「分割一切」,从图像到声音,Meta 开源 SAM Audio
深度学习·算法·计算机视觉