深度学习和神经网络 卷积神经网络CNN

1.什么是卷积神经网络

一种前馈神经网络;受生物学感受野的机制提出专门处理网格结构数据的深度学习模型

核心特点:通过卷积操作自动提取空间局部特征(如纹理、边缘),显著降低参数量

2.CNN的三个结构特征

局部连接;权重共享(不同位置上的卷积核是一样的);空间或时间上的次采样

3.卷积过程及不同类型的卷积

卷积过程:

输入矩阵与卷积核作矩阵乘法得到特征矩阵

javascript 复制代码
输入矩阵        卷积核(3×3)      输出特征图(3×3)
[1, 1, 1, 0, 0]   [1, 0, 1]        [4, 3, 4]
[0, 1, 1, 1, 0]   [0, 1, 0]   →    [2, 4, 3]
[0, 0, 1, 1, 1]   [1, 0, 1]        [2, 3, 4]
[0, 0, 1, 1, 0]                (步长=1,无填充)
[1, 1, 0, 0, 0]

不同类型卷积:

举出较常见的:

(1)窄卷积:步长step=1,无padding,卷积后输出维数为M-K+1

(2)宽卷积:步长step=1,有padding,在外围补K-1圈0,卷积后输出维数M+K-1

(3)等宽卷积(输出大小不变):步长step=1;有padding,在外围补一圈0即可,卷积后输出维数为M

注:M为输入序列的维数,K为补的大小,以矩阵为例

4.卷积核,卷积层,卷积网络结构

卷积核:

一个特征提取器,可以有多个卷积核,比如一个提取水平特征一个提取垂直特征,可以通过增加卷积核的个数来增强卷积层的能力

卷积层:

典型的卷积层为3维结构

卷积网络结构:

由卷积层、池化层,全连接层堆叠而成

(1)数据输入层(input_layer)

(2)卷积计算层(conv_layer)

局部特征提取;训练中进行参数学习;每个卷积核提取特定模式的特征

(3)ReLU激活层(ReLU_layer)

(4)池化层(polling_layer)

降低数据维度,避免过拟合;增强局部感受野;提高平移不变性

为了提炼最主要的特征并降维

(5)全连接层(fc_layer)

特征提取到分类的桥梁

5.残差网络(ResNet)

通过给非线性的卷积层增加直连边的方式来提高信息的传播效率

ResNet通过 "跨层连接 + 残差学习" ,将深层网络训练转化为对微小扰动(残差)的优化,彻底解决深度退化问题,开启千层神经网络时代

相关推荐
锅挤30 分钟前
深度学习5(深层神经网络 + 参数和超参数)
人工智能·深度学习·神经网络
网安INF36 分钟前
深层神经网络:原理与传播机制详解
人工智能·深度学习·神经网络·机器学习
喜欢吃豆40 分钟前
目前最火的agent方向-A2A快速实战构建(二): AutoGen模型集成指南:从OpenAI到本地部署的全场景LLM解决方案
后端·python·深度学习·flask·大模型
喜欢吃豆2 小时前
快速手搓一个MCP服务指南(九): FastMCP 服务器组合技术:构建模块化AI应用的终极方案
服务器·人工智能·python·深度学习·大模型·github·fastmcp
shangyingying_111 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎12 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
要努力啊啊啊13 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
Blossom.11814 小时前
机器学习在智能建筑中的应用:能源管理与环境优化
人工智能·python·深度学习·神经网络·机器学习·机器人·sklearn
m0_6786933315 小时前
深度学习笔记29-RNN实现阿尔茨海默病诊断(Pytorch)
笔记·rnn·深度学习