01 Deep learning神经网络的编程基础 二分类--吴恩达

二分类

1. 核心定义

二分类任务是监督学习中最基础的问题类型,其目标是将样本划分为两个互斥类别。设样本特征空间为 X ⊆ R n \mathcal{X} \subseteq \mathbb{R}^n X⊆Rn,输出空间为 Y = { 0 , 1 } \mathcal{Y} = \{0,1\} Y={0,1},学习目标为建立映射关系:
f : X → Y f: \mathcal{X} \to \mathcal{Y} f:X→Y

1.1以识别猫咪为例

在计算机中,这张图片需要三个矩阵进行表示,分别对应红、绿、蓝三种通道,如果它是一张像素为64的图片,则每个矩阵为64*64的矩阵,分别对应红、绿、蓝三种颜色的强度值。定义特征向量 x \mathcal{x} x来表示这张图片:把这三个向量中的所有像素取出放入同一个矩阵中,则这个特征向量的维度是64 * 64 * 3,也就是nx=64 * 64 * 3。

符号定义说明:

x \mathcal{x} x :表示一个输入数据,维度为(nx,1)
y \mathcal{y} y :表示一个输出结果,取值为(0,1)
( x ( i ) , y ( i ) \mathbf{x}^{(i)},\mathbf{y}^{(i)} x(i),y(i)) :表示第i组数据,此处默认为训练数据。(测试数据)
X =[ x ( 1 ) , x ( 2 ) , . . . , x ( m ) \mathbf{x}^{(1)},\mathbf{x}^{(2)},...,\mathbf{x}^{(m)} x(1),x(2),...,x(m)]: 表示所有训练数据的输入值,放在一个(nx,m)的矩阵中。
Y =[ y ( 1 ) , y ( 2 ) , . . . , y ( m ) \mathbf{y}^{(1)},\mathbf{y}^{(2)},...,\mathbf{y}^{(m)} y(1),y(2),...,y(m)]: 表示所有训练数据的输出值,放在一个(1,m)的矩阵中。
( x , y \mathcal{x},\mathcal{y} x,y ) :表示单个样本。
Mtrain :表示由m个单独的样本组成训练集; {( x ( 1 ) , y ( 1 ) \mathbf{x}^{(1)},\mathbf{y}^{(1)} x(1),y(1)), x ( 2 ) , y ( 2 ) \mathbf{x}^{(2)},\mathbf{y}^{(2)} x(2),y(2),..., x ( m ) , y ( m ) \mathbf{x}^{(m)},\mathbf{y}^{(m)} x(m),y(m)};(Mtest

相关推荐
心疼你的一切5 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
chian-ocean6 小时前
量化加速实战:基于 `ops-transformer` 的 INT8 Transformer 推理
人工智能·深度学习·transformer
水月wwww6 小时前
【深度学习】卷积神经网络
人工智能·深度学习·cnn·卷积神经网络
杜子不疼.6 小时前
CANN_Transformer加速库ascend-transformer-boost的大模型推理性能优化实践
深度学习·性能优化·transformer
酷酷的崽7986 小时前
CANN 开源生态实战:端到端构建高效文本分类服务
分类·数据挖掘·开源
island13146 小时前
CANN HIXL 高性能单边通信库深度解析:PGAS 模型在异构显存上的地址映射与异步传输机制
人工智能·神经网络·架构
renhongxia17 小时前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
深鱼~7 小时前
ops-transformer算子库:解锁昇腾大模型加速的关键
人工智能·深度学习·transformer·cann
禁默7 小时前
不仅是 FlashAttention:揭秘 CANN ops-transformer 如何重构大模型推理
深度学习·重构·aigc·transformer·cann
笔画人生7 小时前
进阶解读:`ops-transformer` 内部实现与性能调优实战
人工智能·深度学习·transformer