关于 jupyter 找不到虚拟环境中安装好的包的问题

问题描述

使用 conda 创建了一个虚拟环境,名称为 d2l-zh。在这个虚拟环境中安装了 torch,并且在命令行中可以成功导入 torch。

但是,在 jupyter 中却显示找不到该模块。

明明安装了 torch 模块,在命令行中也成功导入了,但是在 jupyter 中却显示找不到。

问题分析

既然我们在命令行中可以导入,那么说明虚拟环境是不存在问题的,因此问题大概率出在 jupyter 上,那么我们检查一下在 jupyter 中包的搜索路径。

python 复制代码
import sys
sys.path

由输出结果可以看出,我们明明使用的是虚拟环境 d2l-zh,但是包的搜索路径竟然是基环境 base 的路径。也就是说,我们这里相当于仍然在使用 base 环境。网上有博文说可以添加上我们虚拟环境的路径,但是这种方式治标不治本。

通过以上信息一步一步分析,最终发现是由于这条命令造成的:

bash 复制代码
# 将虚拟环境导入 Jupyter 的 kernel 中
python -m ipykernel install --user --name=环境名

原来是由于我在 base 环境中执行的该命令,导致虽然能在 jupyter 中选择该内核,但是实际上使用的还是 base 环境。

相当于给 base 环境起了一个别名?(个人理解,不知道对不对)

问题解决

在对应的虚拟环境中执行该命令即可,完整步骤:

创建虚拟环境:

bash 复制代码
conda create -n d2l-zh python=3.9

进入到虚拟环境:

bash 复制代码
conda activate d2l-zh

安装必要的包:

bash 复制代码
pip install jupyter
pip install ipykernel
# 安装其他需要的包,如 torch 等

将虚拟环境导入 Jupyter 的 kernel 中:

bash 复制代码
python -m ipykernel install --user --name=d2l-zh

注意:这条命令一定要在对应的虚拟环境中执行!否则就会出现上面的问题!

重新启动 jupyter,此时可以看到,成功导入了 torch ,并且包的搜索路径也变为了虚拟环境的路径。

至此,问题解决!

相关推荐
知舟不叙3 小时前
深度学习——基于卷积神经网络实现食物图像分类【3】(保存最优模型)
深度学习·分类·cnn·卷积神经网络·图像分类·模型保存
苏苏susuus4 小时前
深度学习:张量标量概念、PyTorch张量创建、类型转换等
人工智能·pytorch·深度学习
成都犀牛4 小时前
工作流和Agent 的区别与联系
人工智能·python·深度学习·神经网络·agent·工作流
路由侠内网穿透5 小时前
本地部署 Jupyter 并实现外部访问(Windows 版本)
服务器·ide·windows·网络协议·tcp/ip·jupyter
佛系小嘟嘟6 小时前
Android Studio Jetpack Compose毛玻璃特效按钮
android·ide·android studio
要努力啊啊啊7 小时前
YOLOv5 模型结构详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
heyheyhey_7 小时前
大模型之深度学习PyTorch篇——导学、创建、运算
人工智能·pytorch·深度学习
MarkGosling8 小时前
【三维重建】VGGT:告别漫长等待,几秒解锁3D世界的CVPR黑马
深度学习·计算机视觉·图像识别
struggle20258 小时前
DIPLOMAT开源程序是基于深度学习的身份保留标记对象多动物跟踪(测试版)
人工智能·python·深度学习