python学智能算法(十五)|机器学习朴素贝叶斯方法进阶-CountVectorizer多文本处理

【1】引言

前序学习进程中,已经学习CountVectorizer文本处理的简单技巧,先相关文章链接为:

python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试-CSDN博客

此次继续深入,研究多文本的综合处理。

【2】代码测试

首先相对于单文本测试,直接将文本改成多行文本:

python 复制代码
# 引入必要的模块
from sklearn.feature_extraction.text import CountVectorizer

# 单个文档
document = ["Python programming is fun and useful for data science.",
            "Python is a great programming language for data science.",
            "Data science uses Python for machine learning and AI.",
            "AI and machine learning are fun with Python.",
            "AI is popular at this time."
            ]

# 创建向量化器
vectorizer = CountVectorizer()
print('vetorizer=', vectorizer)
# 拟合并转换文档
X = vectorizer.fit_transform(document)
print('X=', X)
# 查看词汇表
print("词汇表:\n", vectorizer.get_feature_names_out())

# 查看向量表示
print("向量表示:\n", X.toarray())

尝试运行一下:

X= (0, 14) 1

(0, 13) 1

(0, 8) 1

(0, 6) 1

(0, 1) 1

(0, 18) 1

(0, 5) 1

(0, 4) 1

(0, 15) 1

(1, 14) 1

(1, 13) 1

(1, 8) 1

(1, 5) 1

(1, 4) 1

(1, 15) 1

(1, 7) 1

(1, 9) 1

(2, 14) 1

(2, 1) 1

(2, 5) 1

(2, 4) 1

(2, 15) 1

(2, 19) 1

(2, 11) 1

(2, 10) 1

(2, 0) 1

(3, 14) 1

(3, 6) 1

(3, 1) 1

(3, 11) 1

(3, 10) 1

(3, 0) 1

(3, 2) 1

(3, 20) 1

(4, 8) 1

(4, 0) 1

(4, 12) 1

(4, 3) 1

(4, 16) 1

(4, 17) 1

词汇表:

'ai' 'and' 'are' 'at' 'data' 'for' 'fun' 'great' 'is' 'language' 'learning' 'machine' 'popular' 'programming' 'python' 'science' 'this' 'time' 'useful' 'uses' 'with'

向量表示:

\[0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 0

0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0

1 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1

1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0\]

最开始的X出现"(0,14),1"解读:

0表示(Python programming is fun and useful for data science.)是第0行样本,实际上从1开始计数是第1行样本;

14表示样本中的第一个词,也就是Python,在按照所有文本中所有单词首字母顺序排列后,将位于第14号位置,实际上从1开始计数是第15个,后面的1表示Python这个词在第0行样本中出现了一次。

其余数据意义类似。

输出的词汇表是将所有文本中所有单词首字母顺序排列后获得的结果。

向量表示则按照行的形式,将每一行的列数都扩充或者说是广播到所有文本中所有单词合并同类项后的数量,所有单词合并同类项后刚好是17个数据,所以每一行都有17个数据,在对应行样本中未出现的词就会自动计数0。

【3】总结

使用CountVectorizer开展了多文简单测试。

相关推荐
山海青风7 小时前
11 Prompt 工程进阶:Few-shot 与 Chain-of-Thought
人工智能·prompt
爱看科技7 小时前
AI/AR智能眼镜步入全球破圈增长期,五大科技大厂入局加剧生态市场角逐
人工智能·科技·ar
人有一心7 小时前
深度学习里的树模型TabNet
人工智能·深度学习
Kyln.Wu7 小时前
【python实用小脚本-211】[硬件互联] 桌面壁纸×Python梦幻联动|用10行代码实现“开机盲盒”自动化改造实录(建议收藏)
开发语言·python·自动化
强盛小灵通专卖员7 小时前
边缘计算设备NPU的加速原理
人工智能·深度学习·边缘计算·sci·中文核心·小论文
moz与京7 小时前
【面试向】边缘计算基础介绍
人工智能·边缘计算
ShiMetaPi7 小时前
【ShiMetaPi】基于BM1684X的智能工业视觉边缘计算盒子解决方案
人工智能·边缘计算·bm1684x
强盛小灵通专卖员7 小时前
RK3576边缘计算设备部署YOLOv11
人工智能·深度学习·yolo·边缘计算·sci·rk3576·小论文
Ms_Big8 小时前
ppliteseg改rknn,部署在嵌入式板,加速模型
人工智能·python·深度学习
说私域8 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的移动互联网人气氛围营造机制研究
人工智能·小程序·开源