python学智能算法(十五)|机器学习朴素贝叶斯方法进阶-CountVectorizer多文本处理

【1】引言

前序学习进程中,已经学习CountVectorizer文本处理的简单技巧,先相关文章链接为:

python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试-CSDN博客

此次继续深入,研究多文本的综合处理。

【2】代码测试

首先相对于单文本测试,直接将文本改成多行文本:

python 复制代码
# 引入必要的模块
from sklearn.feature_extraction.text import CountVectorizer

# 单个文档
document = ["Python programming is fun and useful for data science.",
            "Python is a great programming language for data science.",
            "Data science uses Python for machine learning and AI.",
            "AI and machine learning are fun with Python.",
            "AI is popular at this time."
            ]

# 创建向量化器
vectorizer = CountVectorizer()
print('vetorizer=', vectorizer)
# 拟合并转换文档
X = vectorizer.fit_transform(document)
print('X=', X)
# 查看词汇表
print("词汇表:\n", vectorizer.get_feature_names_out())

# 查看向量表示
print("向量表示:\n", X.toarray())

尝试运行一下:

X= (0, 14) 1

(0, 13) 1

(0, 8) 1

(0, 6) 1

(0, 1) 1

(0, 18) 1

(0, 5) 1

(0, 4) 1

(0, 15) 1

(1, 14) 1

(1, 13) 1

(1, 8) 1

(1, 5) 1

(1, 4) 1

(1, 15) 1

(1, 7) 1

(1, 9) 1

(2, 14) 1

(2, 1) 1

(2, 5) 1

(2, 4) 1

(2, 15) 1

(2, 19) 1

(2, 11) 1

(2, 10) 1

(2, 0) 1

(3, 14) 1

(3, 6) 1

(3, 1) 1

(3, 11) 1

(3, 10) 1

(3, 0) 1

(3, 2) 1

(3, 20) 1

(4, 8) 1

(4, 0) 1

(4, 12) 1

(4, 3) 1

(4, 16) 1

(4, 17) 1

词汇表:

'ai' 'and' 'are' 'at' 'data' 'for' 'fun' 'great' 'is' 'language' 'learning' 'machine' 'popular' 'programming' 'python' 'science' 'this' 'time' 'useful' 'uses' 'with'

向量表示:

\[0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 0

0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0

1 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1

1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0\]

最开始的X出现"(0,14),1"解读:

0表示(Python programming is fun and useful for data science.)是第0行样本,实际上从1开始计数是第1行样本;

14表示样本中的第一个词,也就是Python,在按照所有文本中所有单词首字母顺序排列后,将位于第14号位置,实际上从1开始计数是第15个,后面的1表示Python这个词在第0行样本中出现了一次。

其余数据意义类似。

输出的词汇表是将所有文本中所有单词首字母顺序排列后获得的结果。

向量表示则按照行的形式,将每一行的列数都扩充或者说是广播到所有文本中所有单词合并同类项后的数量,所有单词合并同类项后刚好是17个数据,所以每一行都有17个数据,在对应行样本中未出现的词就会自动计数0。

【3】总结

使用CountVectorizer开展了多文简单测试。

相关推荐
AI_Auto6 小时前
智能制造 - 人工智能、隐私保护、信息安全
人工智能·制造
yLDeveloper6 小时前
一只菜鸟学深度学习的日记:入门卷积
机器学习·dive into deep learning
一只乔哇噻6 小时前
java后端工程师+AI大模型开发进修ing(研一版‖day60)
java·开发语言·人工智能·学习·语言模型
千里码aicood6 小时前
计算机大数据、人工智能与智能系统开发定制开发
大数据·人工智能·深度学习·决策树·机器学习·森林树
币圈菜头6 小时前
【空投速递】GAEA项目解析:首个集成人类情感数据的去中心化AI训练网络
人工智能·web3·去中心化·区块链
ID_180079054737 小时前
基于 Python 的 Cdiscount 商品详情 API 调用与 JSON 核心字段解析(含多规格 SKU 提取)
开发语言·python·json
Dcs8 小时前
你的 Prompt 都该重写?
人工智能·ai编程
木卫二号Coding8 小时前
第五十三篇-Ollama+V100+Qwen3:4B-性能
人工智能
飞哥数智坊8 小时前
AI 不只是聊天:聊聊我最近在做的新方向
人工智能
Q_Q5110082858 小时前
python+django/flask+vue的大健康养老公寓管理系统
spring boot·python·django·flask·node.js