Elasticsearch 搜索的流程

Elasticsearch 的搜索流程是一个分布式协作过程,主要包含 ‌查询阶段(Query Phase)‌ 和 ‌取回阶段(Fetch Phase)‌,默认采用 QUERY_THEN_FETCH 模式。以下是详细流程:

一、请求分发与路由

‌1.1 客户端请求发送‌

客户端向集群中任意节点(成为‌协调节点‌)发送搜索请求,请求包含查询条件、目标索引等参数。

‌1.2 目标分片定位‌

协调节点解析请求,根据索引路由策略(如哈希文档ID)确定所有需要查询的‌主分片或副本分片‌位置。请求被并行转发至目标分片所在的数据节点。

二、查询阶段(Query Phase)

‌2.1 分片本地搜索‌

每个目标分片独立执行查询:

使用 倒排索引‌ 匹配符合条件的文档 ID。

计算文档相关性得分(如 BM25 算法)。

根据排序规则(如得分、时间)生成‌优先级队列‌(Top-N 结果),仅存储文档 ID 和排序信息(非完整文档)。

2‌.2 返回中间结果‌

各分片将优先级队列结果(文档 ID + 排序信息)返回给协调节点。

三、结果聚合与排序

‌3.1 全局结果合并‌

协调节点聚合所有分片的中间结果:

按全局排序规则(如相关性得分)对所有文档进行‌重新排序‌。

根据分页参数(from/size)筛选最终的候选文档 ID。

四、取回阶段(Fetch Phase)

4.1 ‌获取完整文档数据‌

协调节点向候选文档 ID 所在的分片发送‌多文档获取请求‌(Multi-Get)。

各分片返回完整文档内容(包括 _source 字段)。

4.2 组装最终响应‌

协调节点整合文档数据,补充高亮、聚合结果等附加信息,返回给客户端。

五、高级搜索模式

‌ DFS_QUERY_THEN_FETCH‌:

在查询前增加‌全局词频统计‌步骤,解决分片间评分不一致问题,但性能较低。

关键流程总结

注‌:若查询包含聚合(Aggregation),各分片会先计算‌局部聚合结果‌,协调节点再汇总生成全局聚合数据。

相关推荐
还是大剑师兰特5 小时前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
水无痕simon6 小时前
5 索引的操作
数据库·elasticsearch
SEO_juper7 小时前
AI 搜索时代:引领变革,重塑您的 SEO 战略
人工智能·搜索引擎·seo·数字营销·seo优化
189228048618 小时前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
Blossom.1189 小时前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎
武子康9 小时前
大数据-70 Kafka 日志清理:删除、压缩及混合模式最佳实践
大数据·后端·kafka
CCF_NOI.10 小时前
解锁聚变密码:从微观世界到能源新未来
大数据·人工智能·计算机·聚变
杨荧10 小时前
基于Python的电影评论数据分析系统 Python+Django+Vue.js
大数据·前端·vue.js·python
数据智研11 小时前
【数据分享】上市公司创新韧性数据(2007-2023)
大数据·人工智能
辞--忧17 小时前
双十一美妆数据分析:洞察消费趋势与行业秘密
大数据