Elasticsearch 搜索的流程

Elasticsearch 的搜索流程是一个分布式协作过程,主要包含 ‌查询阶段(Query Phase)‌ 和 ‌取回阶段(Fetch Phase)‌,默认采用 QUERY_THEN_FETCH 模式。以下是详细流程:

一、请求分发与路由

‌1.1 客户端请求发送‌

客户端向集群中任意节点(成为‌协调节点‌)发送搜索请求,请求包含查询条件、目标索引等参数。

‌1.2 目标分片定位‌

协调节点解析请求,根据索引路由策略(如哈希文档ID)确定所有需要查询的‌主分片或副本分片‌位置。请求被并行转发至目标分片所在的数据节点。

二、查询阶段(Query Phase)

‌2.1 分片本地搜索‌

每个目标分片独立执行查询:

使用 倒排索引‌ 匹配符合条件的文档 ID。

计算文档相关性得分(如 BM25 算法)。

根据排序规则(如得分、时间)生成‌优先级队列‌(Top-N 结果),仅存储文档 ID 和排序信息(非完整文档)。

2‌.2 返回中间结果‌

各分片将优先级队列结果(文档 ID + 排序信息)返回给协调节点。

三、结果聚合与排序

‌3.1 全局结果合并‌

协调节点聚合所有分片的中间结果:

按全局排序规则(如相关性得分)对所有文档进行‌重新排序‌。

根据分页参数(from/size)筛选最终的候选文档 ID。

四、取回阶段(Fetch Phase)

4.1 ‌获取完整文档数据‌

协调节点向候选文档 ID 所在的分片发送‌多文档获取请求‌(Multi-Get)。

各分片返回完整文档内容(包括 _source 字段)。

4.2 组装最终响应‌

协调节点整合文档数据,补充高亮、聚合结果等附加信息,返回给客户端。

五、高级搜索模式

‌ DFS_QUERY_THEN_FETCH‌:

在查询前增加‌全局词频统计‌步骤,解决分片间评分不一致问题,但性能较低。

关键流程总结

注‌:若查询包含聚合(Aggregation),各分片会先计算‌局部聚合结果‌,协调节点再汇总生成全局聚合数据。

相关推荐
打码人的日常分享2 小时前
运维服务方案,运维巡检方案,运维安全保障方案文件
大数据·运维·安全·word·安全架构
半夏陌离4 小时前
SQL 拓展指南:不同数据库差异对比(MySQL/Oracle/SQL Server 基础区别)
大数据·数据库·sql·mysql·oracle·数据库架构
A小弈同学6 小时前
新规则,新游戏:AI时代下的战略重构与商业实践
大数据·人工智能·重构·降本增效·电子合同
字节跳动数据平台7 小时前
一客一策:Data Agent 如何重构大模型时代的智能营销?
大数据·agent
用户Taobaoapi20148 小时前
京东图片搜索相似商品API开发指南
大数据·数据挖掘·数据分析
镭眸8 小时前
因泰立科技:用激光雷达重塑智能工厂物流生态
大数据·人工智能·科技
AAA修煤气灶刘哥9 小时前
ES 地理查询玩明白,产品要的 “附近的店” 再也难不倒我!(附 DSL+Java 实战)
java·后端·elasticsearch
IT研究室10 小时前
大数据毕业设计选题推荐-基于大数据的贵州茅台股票数据分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata
Lx35212 小时前
Hadoop异常处理机制:优雅处理失败任务
大数据·hadoop
小嵌同学12 小时前
Linux:malloc背后的实现细节
大数据·linux·数据库