基于pyspark的北京历史天气数据分析及可视化_离线

基于pyspark的北京历史天气数据分析及可视化

项目概况

**👇👇👇👇👇👇👇👇**

点这里,查看所有项目

**👆👆👆👆👆👆👆👆**

数据类型

北京历史天气数据

开发环境

centos7

软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

开发语言

python

开发流程

数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

可视化图表

操作步骤

python安装包

shell 复制代码
pip3 install pandas==2.0.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install flask==3.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install flask-cors==4.0.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pyecharts==2.0.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pymysql==1.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

启动MySQL

shell 复制代码
# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

启动Hadoop

shell 复制代码
# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

准备目录

shell 复制代码
mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "data" 目录下的 "beijing_weather_data.csv" 文件

head -5 beijing_weather_data.csv

上传文件到hdfs

shell 复制代码
cd /data/jobs/project/

hdfs dfs -mkdir -p /data/source/
hdfs dfs -rm -r /data/source/*
hdfs dfs -put -f beijing_weather_data.csv /data/source/
hdfs dfs -ls /data/source/

创建MySQL库

sql 复制代码
CREATE DATABASE IF NOT EXISTS echarts CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

spark数据分析

shell 复制代码
cd /data/jobs/project/

# 上传 "pyspark" 目录下的 "data_process.py" 文件

spark-submit \
--master local[*] \
--jars /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
--driver-class-path /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
/data/jobs/project/data_process.py /data/source/

# 可以进入MySQL进行校验
# select * from weather_info limit 10;
# select * from weather_year_h_temp limit 10;
# select * from weather_min_max_temp limit 10;

启动可视化

shell 复制代码
mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件/文件夹

# windows本地运行: python app.py
python3 app.py pro
相关推荐
BYSJMG6 分钟前
计算机毕设选题:基于Python+MySQL校园美食推荐系统【源码+文档+调试】
大数据·开发语言·python·mysql·django·课程设计·美食
索迪迈科技1 小时前
Flink Task线程处理模型:Mailbox
java·大数据·开发语言·数据结构·算法·flink
深空数字孪生7 小时前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
百胜软件@百胜软件7 小时前
胜券POS:打造智能移动终端,让零售智慧运营触手可及
大数据
摩羯座-185690305948 小时前
Python数据可视化基础:使用Matplotlib绘制图表
大数据·python·信息可视化·matplotlib
在未来等你8 小时前
Kafka面试精讲 Day 13:故障检测与自动恢复
大数据·分布式·面试·kafka·消息队列
jiedaodezhuti8 小时前
Flink通讯超时问题深度解析:Akka AskTimeoutException解决方案
大数据·flink
庄小焱8 小时前
大数据存储域——Kafka实战经验总结
大数据·kafka·大数据存储域
zskj_qcxjqr10 小时前
告别传统繁琐!七彩喜艾灸机器人:一键开启智能养生新时代
大数据·人工智能·科技·机器人
每日新鲜事11 小时前
Saucony索康尼推出全新 WOOOLLY 运动生活羊毛系列 生动无理由,从专业跑步延展运动生活的每一刻
大数据·人工智能