基于pyspark的北京历史天气数据分析及可视化_离线

基于pyspark的北京历史天气数据分析及可视化

项目概况

**👇👇👇👇👇👇👇👇**

点这里,查看所有项目

**👆👆👆👆👆👆👆👆**

数据类型

北京历史天气数据

开发环境

centos7

软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

开发语言

python

开发流程

数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

可视化图表

操作步骤

python安装包

shell 复制代码
pip3 install pandas==2.0.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install flask==3.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install flask-cors==4.0.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pyecharts==2.0.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pymysql==1.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

启动MySQL

shell 复制代码
# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

启动Hadoop

shell 复制代码
# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

准备目录

shell 复制代码
mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "data" 目录下的 "beijing_weather_data.csv" 文件

head -5 beijing_weather_data.csv

上传文件到hdfs

shell 复制代码
cd /data/jobs/project/

hdfs dfs -mkdir -p /data/source/
hdfs dfs -rm -r /data/source/*
hdfs dfs -put -f beijing_weather_data.csv /data/source/
hdfs dfs -ls /data/source/

创建MySQL库

sql 复制代码
CREATE DATABASE IF NOT EXISTS echarts CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

spark数据分析

shell 复制代码
cd /data/jobs/project/

# 上传 "pyspark" 目录下的 "data_process.py" 文件

spark-submit \
--master local[*] \
--jars /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
--driver-class-path /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
/data/jobs/project/data_process.py /data/source/

# 可以进入MySQL进行校验
# select * from weather_info limit 10;
# select * from weather_year_h_temp limit 10;
# select * from weather_min_max_temp limit 10;

启动可视化

shell 复制代码
mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件/文件夹

# windows本地运行: python app.py
python3 app.py pro
相关推荐
西格电力科技2 分钟前
绿电直连架构适配技术的发展趋势
大数据·服务器·数据库·架构·能源
ZCXZ12385296a7 分钟前
YOLOv8-SDFM实现纸箱尺寸检测与分类系统详解
yolo·分类·数据挖掘
不光头强10 分钟前
git命令速查表
大数据·git·elasticsearch
我是哈哈hh20 分钟前
【Python数据分析】数据可视化(全)
开发语言·python·信息可视化·数据挖掘·数据分析
山东小木23 分钟前
A2UI:智能问数的界面构建策略
大数据·人工智能·jboltai·javaai·springboot ai·a2ui
龙山云仓24 分钟前
No098:黄道婆&AI:智能的工艺革新与技术传承
大数据·开发语言·人工智能·python·机器学习
管理大亨28 分钟前
电商零售ELK应用:五大核心场景解析
大数据·elk·零售
管理大亨30 分钟前
光伏大棚智慧管理:ELK数据中枢
大数据·运维·elk·elasticsearch
Lin_Miao_0931 分钟前
Flink + Doris + Airflow 构建企业级实时报表统计平台方案
大数据·flink
MuseDAM_cc41 分钟前
企业素材找不到?DAM 3 步解决资产分散
大数据·人工智能