基于pyspark的北京历史天气数据分析及可视化_离线

基于pyspark的北京历史天气数据分析及可视化

项目概况

**👇👇👇👇👇👇👇👇**

点这里,查看所有项目

**👆👆👆👆👆👆👆👆**

数据类型

北京历史天气数据

开发环境

centos7

软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

开发语言

python

开发流程

数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

可视化图表

操作步骤

python安装包

shell 复制代码
pip3 install pandas==2.0.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install flask==3.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install flask-cors==4.0.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pyecharts==2.0.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pymysql==1.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

启动MySQL

shell 复制代码
# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

启动Hadoop

shell 复制代码
# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

准备目录

shell 复制代码
mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "data" 目录下的 "beijing_weather_data.csv" 文件

head -5 beijing_weather_data.csv

上传文件到hdfs

shell 复制代码
cd /data/jobs/project/

hdfs dfs -mkdir -p /data/source/
hdfs dfs -rm -r /data/source/*
hdfs dfs -put -f beijing_weather_data.csv /data/source/
hdfs dfs -ls /data/source/

创建MySQL库

sql 复制代码
CREATE DATABASE IF NOT EXISTS echarts CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

spark数据分析

shell 复制代码
cd /data/jobs/project/

# 上传 "pyspark" 目录下的 "data_process.py" 文件

spark-submit \
--master local[*] \
--jars /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
--driver-class-path /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
/data/jobs/project/data_process.py /data/source/

# 可以进入MySQL进行校验
# select * from weather_info limit 10;
# select * from weather_year_h_temp limit 10;
# select * from weather_min_max_temp limit 10;

启动可视化

shell 复制代码
mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件/文件夹

# windows本地运行: python app.py
python3 app.py pro
相关推荐
向量引擎小橙1 分钟前
智能体“组团”时代:通信协议标准化如何颠覆未来协作模式?
大数据·人工智能·深度学习·集成学习
电商API_1800790524711 分钟前
大麦网API实战指南:关键字搜索与详情数据获取全解析
java·大数据·前端·人工智能·spring·网络爬虫
jkyy201428 分钟前
汽车×大健康融合:智慧健康监测座舱成车企新赛道核心布局
大数据·人工智能·物联网·汽车·健康医疗
num_killer31 分钟前
小白的Spark初识(RDD)
大数据·分布式·spark
叫我:松哥31 分钟前
基于Flask+ECharts+Bootstrap构建的微博智能数据分析大屏
人工智能·python·信息可视化·数据分析·flask·bootstrap·echarts
三金121381 小时前
Git常用操作命令
大数据·elasticsearch·搜索引擎
longxibo1 小时前
mysql数据快速导入doris
android·大数据·python·mysql
小湘西1 小时前
数仓分层架构详解2:ODS、DWD、DWS
大数据·数据库·数据仓库
青春不败 177-3266-05201 小时前
AI支持下的临床医学日常工作、论文撰写、数据分析与可视化、机器学习建模中的实践应用
人工智能·数据挖掘·数据分析·医学
小湘西1 小时前
数仓分层架构详解:ODS、DWD、DWS
数据仓库·数据分析