基于pyspark的北京历史天气数据分析及可视化_离线

基于pyspark的北京历史天气数据分析及可视化

项目概况

**👇👇👇👇👇👇👇👇**

点这里,查看所有项目

**👆👆👆👆👆👆👆👆**

数据类型

北京历史天气数据

开发环境

centos7

软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

开发语言

python

开发流程

数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

可视化图表

操作步骤

python安装包

shell 复制代码
pip3 install pandas==2.0.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install flask==3.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install flask-cors==4.0.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pyecharts==2.0.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pymysql==1.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

启动MySQL

shell 复制代码
# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

启动Hadoop

shell 复制代码
# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

准备目录

shell 复制代码
mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "data" 目录下的 "beijing_weather_data.csv" 文件

head -5 beijing_weather_data.csv

上传文件到hdfs

shell 复制代码
cd /data/jobs/project/

hdfs dfs -mkdir -p /data/source/
hdfs dfs -rm -r /data/source/*
hdfs dfs -put -f beijing_weather_data.csv /data/source/
hdfs dfs -ls /data/source/

创建MySQL库

sql 复制代码
CREATE DATABASE IF NOT EXISTS echarts CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

spark数据分析

shell 复制代码
cd /data/jobs/project/

# 上传 "pyspark" 目录下的 "data_process.py" 文件

spark-submit \
--master local[*] \
--jars /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
--driver-class-path /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
/data/jobs/project/data_process.py /data/source/

# 可以进入MySQL进行校验
# select * from weather_info limit 10;
# select * from weather_year_h_temp limit 10;
# select * from weather_min_max_temp limit 10;

启动可视化

shell 复制代码
mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件/文件夹

# windows本地运行: python app.py
python3 app.py pro
相关推荐
卷Java2 小时前
智慧停车大屏数据分析与设计文档
java·大数据·人工智能·数据分析
@小红花2 小时前
数据分析-Excel-常用函数
数据挖掘·数据分析·excel
孟意昶2 小时前
Spark专题-第三部分:性能监控与实战优化(1)-认识spark ui
大数据·数据仓库·sql·ui·spark·etl
MoRanzhi12032 小时前
2. Pandas 核心数据结构:Series 与 DataFrame
大数据·数据结构·人工智能·python·数据挖掘·数据分析·pandas
经典19923 小时前
Elasticsearch 讲解及 Java 应用实战:从入门到落地
java·大数据·elasticsearch
大叔_爱编程3 小时前
基于Hadoop的美妆产品网络评价的数据采集与分析-django+spider
大数据·hadoop·django·毕业设计·源码·课程设计·美妆产品
syounger3 小时前
SAP与阿里巴巴战略合作升级:四大核心云解决方案落地阿里云
大数据·人工智能·阿里云
Q26433650234 小时前
【有源码】基于Hadoop+Spark的豆瓣电影数据分析与可视化系统-基于大数据的电影评分趋势分析与可视化系统
大数据·hadoop·python·数据分析·spark·毕业设计·课程设计
环球科讯4 小时前
建行广东茂名河东支行:开展“金融知识万里行”系列活动
大数据·人工智能
vx_dmxq2116 小时前
免费领源码-Spring boot的物流管理系统 |可做计算机毕设Java、Python、PHP、小程序APP、C#、爬虫大数据、单片机、文案
java·大数据·python·jupyter·课程设计