基于pyspark的北京历史天气数据分析及可视化_离线

基于pyspark的北京历史天气数据分析及可视化

项目概况

**👇👇👇👇👇👇👇👇**

点这里,查看所有项目

**👆👆👆👆👆👆👆👆**

数据类型

北京历史天气数据

开发环境

centos7

软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

开发语言

python

开发流程

数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

可视化图表

操作步骤

python安装包

shell 复制代码
pip3 install pandas==2.0.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install flask==3.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install flask-cors==4.0.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pyecharts==2.0.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pymysql==1.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

启动MySQL

shell 复制代码
# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

启动Hadoop

shell 复制代码
# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

准备目录

shell 复制代码
mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "data" 目录下的 "beijing_weather_data.csv" 文件

head -5 beijing_weather_data.csv

上传文件到hdfs

shell 复制代码
cd /data/jobs/project/

hdfs dfs -mkdir -p /data/source/
hdfs dfs -rm -r /data/source/*
hdfs dfs -put -f beijing_weather_data.csv /data/source/
hdfs dfs -ls /data/source/

创建MySQL库

sql 复制代码
CREATE DATABASE IF NOT EXISTS echarts CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

spark数据分析

shell 复制代码
cd /data/jobs/project/

# 上传 "pyspark" 目录下的 "data_process.py" 文件

spark-submit \
--master local[*] \
--jars /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
--driver-class-path /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
/data/jobs/project/data_process.py /data/source/

# 可以进入MySQL进行校验
# select * from weather_info limit 10;
# select * from weather_year_h_temp limit 10;
# select * from weather_min_max_temp limit 10;

启动可视化

shell 复制代码
mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件/文件夹

# windows本地运行: python app.py
python3 app.py pro
相关推荐
过期的秋刀鱼!8 分钟前
用“做饭”理解数据分析流程(Excel三件套实战)
数据挖掘·数据分析·excel·powerbi·数据分析入门
小庞在加油17 分钟前
《dlib库中的聚类》算法详解:从原理到实践
c++·算法·机器学习·数据挖掘·聚类
SeaTunnel17 分钟前
SeaTunnel 社区月报(5-6 月):全新功能上线、Bug 大扫除、Merge 之星是谁?
大数据·开源·bug·数据集成·seatunnel
时序数据说1 小时前
Java类加载机制及关于时序数据库IoTDB排查
java·大数据·数据库·物联网·时序数据库·iotdb
kngines1 小时前
【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
人工智能·数据挖掘·面试题
大数据CLUB3 小时前
基于spark的航班价格分析预测及可视化
大数据·hadoop·分布式·数据分析·spark·数据可视化
格调UI成品3 小时前
预警系统安全体系构建:数据加密、权限分级与误报过滤方案
大数据·运维·网络·数据库·安全·预警
程序员阿超的博客4 小时前
Python 数据分析与机器学习入门 (八):用 Scikit-Learn 跑通第一个机器学习模型
python·机器学习·数据分析·scikit-learn·入门教程·python教程
reddingtons6 小时前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
G皮T7 小时前
【Elasticsearch】全文检索 & 组合检索
大数据·elasticsearch·搜索引擎·全文检索·match·query·组合检索