【第三章:神经网络原理详解与Pytorch入门】02.深度学习框架PyTorch入门-(5)PyTorch 实战——使用 RNN 进行人名分类

第三章: 神经网络原理详解与Pytorch入门

第二部分:深度学习框架PyTorch入门

第五节:PyTorch 实战

内容:使用 RNN进行人名分类

任务简介

本任务旨在使用 循环神经网络(RNN) 对输入的英文人名进行分类,判断其所属语言(如English、French、Chinese等)。该项目常用于学习字符级别的RNN序列建模。


一、准备数据

PyTorch 官方教程使用的名字数据集来源于 names.tar.gz,每种语言对应一个文本文件,文件中包含若干名字。

1. 加载依赖

python 复制代码
import os
import unicodedata
import string
import torch

2. 处理字符集与标准化

python 复制代码
all_letters = string.ascii_letters + " .,;'"
n_letters = len(all_letters)

def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn' and c in all_letters
    )

3. 读取每种语言的名字列表

python 复制代码
category_lines = {}  # dict: language -> [name1, name2, ...]
all_categories = []

def readLines(filename):
    with open(filename, encoding='utf-8') as f:
        return [unicodeToAscii(line.strip()) for line in f]

data_path = './data/names/'
for filename in os.listdir(data_path):
    category = os.path.splitext(filename)[0]
    all_categories.append(category)
    lines = readLines(os.path.join(data_path, filename))
    category_lines[category] = lines

n_categories = len(all_categories)

二、构建输入张量

python 复制代码
def letterToTensor(letter):
    tensor = torch.zeros(1, n_letters)
    tensor[0][all_letters.find(letter)] = 1
    return tensor

def lineToTensor(line):
    tensor = torch.zeros(len(line), 1, n_letters)
    for li, letter in enumerate(line):
        tensor[li][0][all_letters.find(letter)] = 1
    return tensor

三、构建 RNN 模型

python 复制代码
import torch.nn as nn

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size

        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input_size + hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.i2o(combined)
        output = self.softmax(output)
        return output, hidden

    def initHidden(self):
        return torch.zeros(1, self.hidden_size)

四、训练过程

python 复制代码
criterion = nn.NLLLoss()
learning_rate = 0.005
rnn = RNN(n_letters, 128, n_categories)

def train(category_tensor, line_tensor):
    hidden = rnn.initHidden()
    rnn.zero_grad()

    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)

    loss = criterion(output, category_tensor)
    loss.backward()

    for param in rnn.parameters():
        param.data -= learning_rate * param.grad.data

    return output, loss.item()

五、预测

python 复制代码
def predict(input_line):
    with torch.no_grad():
        line_tensor = lineToTensor(input_line)
        hidden = rnn.initHidden()

        for i in range(line_tensor.size()[0]):
            output, hidden = rnn(line_tensor[i], hidden)

        topv, topi = output.topk(1)
        category_index = topi[0].item()
        return all_categories[category_index]

六、总结与扩展

模块 内容
数据格式 文本字符级序列
模型 单层 RNN(可拓展为 LSTM/GRU)
输入 One-hot 字符序列
输出 各语言类别的 LogSoftmax 概率
优化 手动梯度下降,可拓展为使用 optimizer.step()

可视化

  • 可视化训练损失下降曲线
python 复制代码
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.animation as animation

# 模拟训练损失
epochs = 50
np.random.seed(1)
base_loss = np.linspace(2.0, 0.3, epochs)
noise = np.random.normal(0, 0.05, epochs)
loss_values = np.maximum(base_loss + noise, 0.2)

# 设置图像
fig, ax = plt.subplots(figsize=(8, 4))
ax.set_xlim(1, epochs)
ax.set_ylim(0, 2.2)
line, = ax.plot([], [], lw=2)
point, = ax.plot([], [], 'ro')
title = ax.set_title("Training Loss Animation")

def init():
    line.set_data([], [])
    point.set_data([], [])
    return line, point

def update(frame):
    x = np.arange(1, frame + 2)
    y = loss_values[:frame + 1]
    line.set_data(x, y)
    point.set_data([x[-1]], [y[-1]])
    title.set_text(f"Epoch: {frame + 1}, Loss: {y[-1]:.3f}")
    return line, point, title

ani = animation.FuncAnimation(fig, update, frames=epochs, init_func=init, blit=True, interval=120)
ani.save("training_loss_animation.gif", writer='pillow', fps=10)
  • 混淆矩阵评估模型在不同语言上的分类准确率
相关推荐
可触的未来,发芽的智生5 小时前
新奇特:神经网络烘焙坊(下),万能配方的甜蜜奥义
人工智能·python·神经网络·算法·架构
代码79728 小时前
使用会话存储时,处理存储信息加密问题
深度学习·算法·自动化·散列表·harmonyos
小毕超8 小时前
基于 PyTorch 完全从零手搓 GPT 混合专家 (MOE) 对话模型
pytorch·transformer·moe
极度畅想8 小时前
脑电模型实战系列:入门脑电情绪识别-用最简单的DNN模型起步
神经网络·数据可视化·模型训练·eeg·生理信号处理
Coovally AI模型快速验证8 小时前
华为发布开源超节点架构,以开放战略叩响AI算力生态变局
人工智能·深度学习·神经网络·计算机视觉·华为·架构·开源
ygyqinghuan8 小时前
Pytorch 数据处理
人工智能·pytorch·python
且慢.5899 小时前
机器学习/深度学习名词理解
人工智能·深度学习·机器学习
SkyXZ~9 小时前
AWS SageMaker SDK 完整教程:从零开始云端训练你的模型
人工智能·深度学习·云计算·aws·sagemaker·boto3
nju_spy10 小时前
南京大学 LLM开发基础(二)大语言模型解析 -- 基于HF LlaMA实现的讲解
人工智能·pytorch·深度学习·大模型·多头注意力·rmsnorm·位置掩码
胡耀超10 小时前
开源生态与技术民主化 - 从LLaMA到DeepSeek的开源革命(LLaMA、DeepSeek-V3、Mistral 7B)
人工智能·python·神经网络·开源·大模型·llama·deepseek