闲庭信步使用图像验证平台加速FPGA的开发:第七课——获取RAW图像

(本系列只需要modelsim即可完成数字图像的处理,每个工程都搭建了全自动化的仿真环境,只需要双击 文件就可以完成整个的仿真,大大降低了初学者的门槛!!!! 如需要该系列的工程文件请关注知识星球: 成工fpga, 关注即送200GB学习资料,链接已置顶!)

如果我们有摄像头,那就可以通过配置摄像头相关的寄存器来直接获取RAW视频数据,但是我们现在是FPGA的功能仿真,我们可以根据测试的图片来提取出RAW图片。

前面的学习可以知道,RAW图像有RGGB,GRBG,GBRG,BGGR等四种格式,不管那种格式,在一幅RAW图像中,格式都是按照2x2的因子反复出现的,如下所示。

我们要从RGB三个通道中取数生成一幅RAW图像,因为是2x2的因子,也就是说第0,1行,第0,1列;第0,1行,第2,3列;第0,1行第4,5列格式都是一样的,这样我们只要能够区分出来每行的奇偶位置和没列的奇偶位置,就能够正确的对RGB通道分别进行取数。

在obtain_raw.sv文件中,使用vsync_flag和hsync_flag来 表示行列的奇偶位置

有了奇偶位置的标示,根据pattern_sel信号来选择每个位置的像素点数据。

由于取数据采用时序逻辑需要一个时钟周期,所以场同步,行同步和数据有效指示信号延时一个时钟周期即可。

在顶层top文件中例化obtain_raw模块。

在tb_image_sim文件中的第二个initial块中,将图像测试平台和FPGA硬件仿真的结果保存并比对。

我们双击sim文件夹下的top_tb.bat文件,完成系统的自动化仿真。

可以看到在modelsim的Transcript有如下的打印信息,图像测试平台和FPGA硬件仿真的结果一致。

打开img文件夹,也可以看到图像测试平台和FPGA硬件仿真的结果是一致的(no_seq*是图像测试平台处理后的图片,seq*是FPGA硬件仿真处理后的结果)。

相关推荐
CoovallyAIHub1 天前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
CoovallyAIHub1 天前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub1 天前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
xiaohouzi1122333 天前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
小关会打代码3 天前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉
天天进步20153 天前
用Python打造专业级老照片修复工具:让时光倒流的数字魔法
人工智能·计算机视觉
荼蘼3 天前
答题卡识别改分项目
人工智能·opencv·计算机视觉
IT古董3 天前
【第五章:计算机视觉-项目实战之图像分类实战】1.经典卷积神经网络模型Backbone与图像-(4)经典卷积神经网络ResNet的架构讲解
人工智能·计算机视觉·cnn
风_峰3 天前
Ubuntu Linux SD卡分区操作
嵌入式硬件·ubuntu·fpga开发
FPGA_Linuxer3 天前
FPGA 40 DAC线缆和光模块带光纤实现40G UDP差异
网络协议·fpga开发·udp