计算机视觉的未来方向:无监督学习与生成模型

ECCV:计算机视觉的未来方向?

欧洲计算机视觉会议(ECCV)于周日开幕,与国际计算机视觉会议(ICCV)交替举办。原定今年在格拉斯哥举行的ECCV,与今年夏天大多数主要计算机科学会议一样,转为线上举行。

计算机视觉的现状

Thomas Brox是亚马逊学者,也是弗莱堡大学的计算机科学教授,担任今年ECCV的程序主席。他表示:"过去,ECCV更偏向数学和3D几何,而CVPR更偏向模式识别。但现在,由于深度学习的普及,两者越来越相似。"

Brox第一次参加ECCV是在2004年,当时他还是研究生。到了2014年、2015年,深度学习革命席卷计算机视觉领域,他回忆道:"那时许多计算机视觉问题突然变得简单了。你随便用一个网络,性能就能远超以前的方法。"

然而,如今情况发生了变化:"现在大家都在调整网络的细节、训练方法、数据收集和呈现方式,以获得微小的改进。基准测试的进展仍然较快,但概念上的进展相对缓慢。过去,当概念进展停滞时,基准测试的进展最终也会停止。"

未来的突破方向

Brox认为,未来的突破可能来自以下几个方向:

  1. 无监督学习:当前的机器学习主要依赖标注数据(监督学习),但标注数据可能限制模型的潜力。无监督学习通过未标注数据训练模型,可能带来新的突破。

  2. 生成模型:与当前主流的判别模型不同,生成模型试图学习变量之间的概率分布,从而构建世界的统计模型。生成模型不仅能分类,还能解释数据,可能提供更鲁棒的模型。

  3. 深度学习与几何学的结合:Brox正在研究如何将深度学习与传统的3D几何方法结合,尤其是利用物体运动信息推断其3D形状。他认为,运动信号中包含大量未被充分利用的信息,结合几何学和深度学习的优势可能带来新的进展。

挑战与机遇

Brox指出,新概念在初期往往不如经过优化的现有方法表现好,就像深度学习早期一样。研究者需要坚持并不断改进,才能使其达到业界领先水平。

他总结道:"深度学习与几何学的结合非常有前景。你不能只用深度学习解决所有问题,而是需要将经典几何、数学与深度学习的模式识别能力结合起来。"

更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)

公众号二维码

相关推荐
飞翔的佩奇18 分钟前
【完整源码+数据集+部署教程】二维码与查找模式检测系统源码和数据集:改进yolo11-CSwinTransformer
python·yolo·计算机视觉·数据集·yolo11·二维码与查找模式检测
qq_526099132 小时前
图像采集卡与工业相机:机器视觉“双剑合璧”的效能解析
图像处理·数码相机·计算机视觉
CoovallyAIHub4 小时前
为高空安全上双保险!无人机AI护航,YOLOv5秒判安全带,守护施工生命线
深度学习·算法·计算机视觉
才思喷涌的小书虫5 小时前
小白玩转 DINO-X MCP(2):基于 DINO-X MCP 搭建饮食规划工作流
计算机视觉·mcp
计算机sci论文精选6 小时前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能
山烛7 小时前
OpenCV 图像处理基础操作指南(二)
人工智能·python·opencv·计算机视觉
CoovallyAIHub8 小时前
线性复杂度破局!Swin Transformer 移位窗口颠覆高分辨率视觉建模
深度学习·算法·计算机视觉
硅谷秋水12 小时前
在相机空间中落地动作:以观察为中心的视觉-语言-行动策略
机器学习·计算机视觉·语言模型·机器人
hllqkbb12 小时前
从 SGD 到梯度累积:Epoch、Batch、Step 的关系全解析
开发语言·人工智能·opencv·计算机视觉·batch
若天明1 天前
深度学习-计算机视觉-微调 Fine-tune
人工智能·python·深度学习·机器学习·计算机视觉·ai·cnn