线性回归笔记

线性回归简介

  1. 定义:通过属性的线性组合进行预测的线性模型,目标是找到一条直线、平面或更高维的超平面,使预测值与真实值的误差最小化。
  2. 示例:如房屋价格预测,可用函数f(x)=W0+W1x表示,其中x为房屋大小,f(x)为价格。
  3. 一般形式
    • 对于由d个属性描述的示例x=(x1;x2;⋯;xd),线性模型函数为f(x)=w1x1+w2x2+⋯+wdxd+b。
    • 向量形式:f(x)=wTx+b。
  4. 最小二乘法:基于均方误差最小化进行模型求解的方法,均方误差对应 "欧氏距离",其试图找到一条直线,使所有样本到直线的欧氏距离之和最小。

二、线性回归的评估指标

  1. 误差平方和 / 残差平方和(SSE/RSS):SSE=∑i=1m(yi−y^i)2
  2. 平方损失 / 均方误差(MSE):MSE=n1∑i=1n(yi−y^i)2
  3. R 方:越接近 1,模型拟合效果越好。
    • 计算公式:R2=1−∑(yi−yˉ)2∑(yi−y^i)2=1−SSTSSE,也可表示为R2=1−VarMSE。
    • 其中,SSR=∑(y^i−yˉ)2,SSE=∑(yi−y^i)2,SST=∑(yi−yˉ)2。

三、线性模型一般形式及参数估计

  1. 对于样本xi,模型为f(xi)=wxi+b,要使f(xi)≃yi。
  2. 参数估计:求w和b使E(w,b)=∑i=1n(yi−wxi−b)2最小化,此过程称为线性回归模型的最小二乘 "参数估计"。
  3. 求解:将E(w,b)分别对w和b求导,令导数为 0,可得到w和b的最优解。

四、多元线性回归

  1. 表达式:y=w0+w1x1+w2x2+⋯+wnxn
  2. 涉及多属性数据,可通过矩阵等形式进行表示和计算。
相关推荐
飞扬的风信子7 小时前
RAG基础知识
机器学习
西格电力科技11 小时前
分布式光伏 “四可” 装置:“发电孤岛” 到 “电网友好” 的关键跨越
分布式·科技·机器学习·能源
陈天伟教授13 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
serve the people18 小时前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
0***K89218 小时前
前端机器学习
人工智能·机器学习
陈天伟教授18 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
合作小小程序员小小店19 小时前
web网页,在线%抖音,舆情,线性回归%分析系统demo,基于python+web+echart+nlp+线性回归,训练,数据库mysql
python·自然语言处理·回归·nlp·线性回归
@sinner21 小时前
你好,Scikit-learn:从零开始你的第一个机器学习项目
python·机器学习·scikit-learn
Jay20021111 天前
【机器学习】7-9 分类任务 & 逻辑回归的成本函数 & 逻辑回归的梯度下降
笔记·机器学习·分类