线性回归笔记

线性回归简介

  1. 定义:通过属性的线性组合进行预测的线性模型,目标是找到一条直线、平面或更高维的超平面,使预测值与真实值的误差最小化。
  2. 示例:如房屋价格预测,可用函数f(x)=W0+W1x表示,其中x为房屋大小,f(x)为价格。
  3. 一般形式
    • 对于由d个属性描述的示例x=(x1;x2;⋯;xd),线性模型函数为f(x)=w1x1+w2x2+⋯+wdxd+b。
    • 向量形式:f(x)=wTx+b。
  4. 最小二乘法:基于均方误差最小化进行模型求解的方法,均方误差对应 "欧氏距离",其试图找到一条直线,使所有样本到直线的欧氏距离之和最小。

二、线性回归的评估指标

  1. 误差平方和 / 残差平方和(SSE/RSS):SSE=∑i=1m(yi−y^i)2
  2. 平方损失 / 均方误差(MSE):MSE=n1∑i=1n(yi−y^i)2
  3. R 方:越接近 1,模型拟合效果越好。
    • 计算公式:R2=1−∑(yi−yˉ)2∑(yi−y^i)2=1−SSTSSE,也可表示为R2=1−VarMSE。
    • 其中,SSR=∑(y^i−yˉ)2,SSE=∑(yi−y^i)2,SST=∑(yi−yˉ)2。

三、线性模型一般形式及参数估计

  1. 对于样本xi,模型为f(xi)=wxi+b,要使f(xi)≃yi。
  2. 参数估计:求w和b使E(w,b)=∑i=1n(yi−wxi−b)2最小化,此过程称为线性回归模型的最小二乘 "参数估计"。
  3. 求解:将E(w,b)分别对w和b求导,令导数为 0,可得到w和b的最优解。

四、多元线性回归

  1. 表达式:y=w0+w1x1+w2x2+⋯+wnxn
  2. 涉及多属性数据,可通过矩阵等形式进行表示和计算。
相关推荐
春末的南方城市24 分钟前
统一虚拟试穿框架OmniTry:突破服装局限,实现多品类可穿戴物品虚拟试穿无蒙版新跨越。
人工智能·深度学习·机器学习·计算机视觉·aigc
无风听海44 分钟前
线性代数之深入理解旋转矩阵
线性代数·机器学习·矩阵·旋转矩阵
悠哉悠哉愿意1 小时前
【机器学习学习笔记】机器学习引言
笔记·学习·机器学习
nnerddboy3 小时前
预测模型及超参数:2.传统机器学习:PLS及其改进
人工智能·机器学习
钢铁男儿3 小时前
PyTorch 机器学习基础(机器学习一般流程)
人工智能·pytorch·机器学习
木头左4 小时前
利用机器学习优化Backtrader策略原理与实践
人工智能·机器学习
boooo_hhh14 小时前
第41周——人脸图像生成
机器学习
淡海水17 小时前
【URP】[平面阴影]原理与实现
平面·unity·urp·阴影
LLM精进之路18 小时前
上海AI实验室突破扩散模型!GetMesh融合点云与三平面,重塑3D内容创作
人工智能·深度学习·机器学习·语言模型·transformer